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ABSTRACT 
 
 
 

The Tomahawk Land-Attack Missile (TLAM) is the long-range precision weapon 

of choice in strike warfare against strategic targets for U.S. military forces.  

Predesignation is the process of determining which ship or submarine will fire which 

TLAM missiles in support of an authorized attack upon specified targets.  This thesis 

revisits the mathematical models and algorithms developed by previous NPS faculty and 

students to optimally conduct the allocation of TLAMs to firing units.  We incorporate all 

the problem specifications addressed by previous heuristic algorithms for the problem, 

and compare our results to those in publicly available test cases.  We show that our 

models can be solved optimally in affordable time for most of the cases and make 

provisions to establish accurate bounds in the other cases. 
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Aim-point A two-letter designation used to identify 

subdivisions of a target. These 
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points for TLAMs. 

Alignment The process of preparing a TLAM for 
launch. During alignment, the missile’s 
navigational equipment is energized, the 
onboard computers are activated, and the 
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Back-up Task-Part A task-part assigned to a firing unit in 
order to provide redundancy for a primary 
task-part of the same task. The firing unit 
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associated primary task-part and ready-
spare task-part fail. 
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designate a target site. 

Block The software and engine combination of a 
TLAM. 

Canister Capsule The component within CLS of a submarine 
that stores TLAMs. 

Capsule Launching A submarine TLAM launching system that 
provides a System (CLS) specific number 
of canister capsules exclusively for 
launching TLAMs. 

Cell The component within a VLS of a ship that 
stores missiles, including TLAMs. 

Digital Scene Matching Area 
Correlation (DSMAC) 

An electro-optical sensor system that takes 
images from the ground below the missile 
and compares these to reference images 
stored in the on-board computer. 
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Expend Firing Unit The firing units that are departing the 
theater of operations very soon or entering 
port for a period of extended maintenance. 

Firing Unit A ship or submarine that can be assigned a 
TLAM task. 

Geo-Feasible Yes/No characteristic for the firing units 
that establishes whether it can fire TLAMs 
at a particular target or not. 

Half-module A four-cell component of a module within 
the VLS. 

Inertial Navigation System (INS) A cluster of sensors that tracks the position 
and orientation of a body to which the 
cluster is rigidly attached. 

Ghost Task-Part A task-part that simultaneously provides 
redundancy for multiple tasks and task-
parts. 

Global Positioning System (GPS) A navigational and positioning system 
developed by the U.S. Department of 
Defense, by which the location of a 
position on or above the Earth can be 
determined by a special receiver at that 
point interpreting signals received 
simultaneously from several of a 
constellation of special satellites. 

Launcher The combination of VLS modules onboard 
a ship. 

Launch Area For a target a large geo-graphic region 
from which a TLAM can be fired and can 
reach the target. 

Missile Mission Matching (M3) List A prioritized list of TLAMs capable of 
fulfilling a task. 

Mission A set of three-dimensional coordinates that 
designates an over-land flight path from a 
TLAM’s point of launch to the target site. 
A mission defines the target, aim-points, 
warhead, block, and launch area. 
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Module The basic component of a VLS, consisting 
of eight cells. 

Non-separable Task-part A task-part that in which all the missiles 
must be allocated to the same firing unit. 

Naval Surface Warfare Center Dahlgren 
Division (NSWCDD) 

A naval command, located in Dahlgren, 
VA, that conducts research and 
development on weapon systems.  

Predesignation The process used to determine which firing 
unit will fire TLAMs during an attack. 
Predesignation is conducted in two phases. 
In Phase 1, the TSC allocates TLAM target 
assignments to ships and submarines. In 
Phase 2, these assignments are allocated to 
specific TLAMs onboard individual firing 
unit based on additional considerations not 
accounted in Phase 1. 

Primary Task-Part A task-part required by a firing unit to 
prepare a missile to launch and to fire 
against a specific target during a specified 
time period. 

Ready-Spare Task-Part A task-part assigned to a firing unit in 
order to provide redundancy for a primary 
task-part of the same task. 

Restricted Target A target that (a) needs all tasks and task-
parts be allocated to a limited number of 
firing units, given independently for each 
restricted target and (b) needs to allocate all 
(or none) of the tasks in the target.  

Salvo Size The maximum number of TLAMs that can 
simultaneously be aligned and launched 
from a firing unit. 

Statute Mile A unit of length equal to 1,760 yards land 
mile. 

Strike An attack of TLAM consisting of multiple, 
overlapping time periods. 
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Target (I) An aim-point on the geo-graphical area that 
is to be fired from ships or submarines. 

Target (II) A set of one or more tasks to be carried out.  
A target with a limit on the number of 
firing units to which its corresponding 
tasks can be assigned is called restricted 
target. In addition, restricted targets require 
all (or none) of their tasks to be allocated. 

Task The combination of mission and time 
period. 

Task-Part Components of a task that indicate whether 
a TLAM is to be fired at a target or aligned 
to provide redundancy. There are four 
types of task-parts. Primary task-parts are 
fired at the target while ready-spare, back-
up and ghost task-parts provide 
redundancy for the primary task-parts. 

Task-Part Missile A missile on a firing unit, associated with a 
task-part, that the firing unit is directed to 
align and prepare for launch. A task-part 
may have one or more task-part missiles. 

Terrain Counter Matching (TERCOM) A method of terrain navigation in which 
the missile’s position is derived by 
correlating a sensed terrain profile 
(synthesized from radar altimeter 
measurements) to a map terrain profile. 

Time Period An allowable interval of time during which 
a TLAM may be fired to complete a 
mission. 

Tomahawk Land Attack Missile 
(TLAM) 

An all-weather submarine- or ship-
launched land-attack cruise missile. 

Tomahawk Strike Coordinator (TSC) The officer on the Battle Group or Naval 
Component Commander staff responsible 
for the employment of TLAMs.  

Torpedo Tube A system used onboard submarines to fire 
torpedoes or TLAMs. 
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Vertical Launching System (VLS) A system onboard a surface ship used to 
store, prepare and launch TLAMs, surface-
to-air missiles, and rocket-thrown 
torpedoes. 

Warhead The part of the missile, typically the head 
or tip, that gets loaded with whatever 
weaponry payload the missile is supposed 
to deliver.  
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EXECUTIVE SUMMARY 
 
 
 

The Tomahawk Land-Attack Missile (TLAM) is the long-range accuracy strategic 

weapon of choice in strike warfare against strategic targets for United States (U.S.) 

military forces.  When the U.S. National Command Authority, formed by the President 

and the Secretary of Defense, authorizes a TLAM strike, the authorization passes down 

through the chain of command via the Chief of Naval Operations, a regional fleet 

Commander-in-Chief, and ultimately to the Battle Group Tomahawk Strike Coordinator 

(TSC).  

Predesignation is the process of determining which ship or submarine will fire 

which TLAM missiles in support of an authorized attack upon specified targets.  

Predesignation has two phases.  In Phase 1, the TSC allocates targets to ships and 

submarines.  In Phase 2, tasks are allocated to specific TLAMs onboard individual ships 

and submarines.  Currently, the TLAM is mostly being used to attack a fixed stationary 

target such as a building, but under the conditions of modern warfare, the TLAM must be 

able to attack a mobile target on short notice.  Our goal is to provide the TSC with an 

automatic predesignation procedure that enables tasks to be assigned quickly and 

efficiently. 

Over the last five years, faculty and students at the Naval Postgraduate School 

(NPS) Operations Research Department have addressed this problem under the 

sponsorship of the Naval Surface Warfare Center, Dahlgren Division (NSWCDD).  A 

series of student theses and other reports document this effort.  As a result, a multi-

objective (MO) mixed-integer programming (MIP) model was developed by the end of 

1999. This model represented an important challenge in terms of solvability.  In fact, 

previous work determined that real-size problems cannot be solved within reasonable 

optimality tolerance in affordable time.  This difficulty was addressed in subsequent 

years by means of fast heuristic algorithms at the expense of solution quality and, to some 

extent, flexibility in the set up of goal priorities and other potential redesigns in the 

problem specifications.  As the NPS team’s knowledge of TLAM predesignation 

 xxiii



evolved, the heuristics addressed features of the problem that were not considered in the 

earliest optimization models.  The latest heuristic algorithm has been recently 

implemented by professional programmers at NSWCDD, adhering to algorithm 

specifications by NPS faculty.  This thesis bridges the gap between the latest 

specifications implemented in the heuristic algorithms and the outdated mathematical 

formulation.  We show that the revised formulation can be solved in reasonable time for 

the existing test cases, including those that incorporate recent features that were not 

incorporated in earlier versions of the formulation. 

Specific accomplishments of this thesis are: 

• Consolidation of all problem specifications to date. 

• Incorporation of all specifications into a revised MO MIP formulation.  In particular, 
the following considerations have been added to the optimization: 

• Submarines and their characteristics: torpedo tubes, missiles in the 
torpedo room, canister capsules, etc. 

• Target concept as a set of multiple tasks sharing certain joint 
constraints. 

• Multiple missiles might be required for every task-part. 

• TSC’s manual allocation missiles to specific cells, torpedo tubes or 
canister capsules. 

• TSC specification regarding whether multiple missiles for a given 
task-part must be assigned to the same firing unit, or separating 
missiles across multiple firing units is allowed. 

• TSC specification regarding whether back-up task-parts can be 
allocated to submarines or not. 

• Incorporation of ghost task-parts and their characteristics. 

• Exploration of alternative techniques to obtain accurate bounds on large-size test 
cases.  We compare the results against those provided by the heuristic to provide 
empiric validation for using the heuristic as a reliable tool to support fast TLAM 
predesignation.   
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I. INTRODUCTION 

A. BACKGROUND 

1. History 
After the signing of first Strategic Arms Limitation Treaty, the strategic cruise 

missile was born.  Until January 6, 1977, the United States (U.S.) Navy and U.S. Air 

Force maintained their own projects independently. On that date, the Defense Systems 

Acquisition Review Council authorized a full-scale engineering and testing program for 

air-launched, anti-surface, theater, and nuclear versions of the cruise missile.  The Joint 

Cruise Missiles Project Office was formed to manage cruise missile development, and it 

became a joint U.S. Navy and Air Force project.  Today, the U.S. Navy continues as a 

lead agency in cruise missile program management. [Reynolds, 1998.] 

The first Tomahawk Land Attack Missile (TLAM) was deployed on board a Los 

Angeles class fast-attack submarine in November 1983. Its first operational use was 

during Operation Desert Storm in 1991. Since its first combat use, it has become the 

weapon of choice in strike warfare for U.S. Military forces.  The governments of the U.S. 

and United Kingdom (U.K.) signed a Foreign Military Sales Agreement for the 

acquisition of 65 missiles in 1995, recorded as the first sale of TLAMs to a foreign 

country [Navy Office of Information, 2004.].  After a successful launch and live warhead 

test in November 1998, the U.K. declared operational capability.  TLAMs can be 

currently launched from U.S. Navy surface ships and from U.S. Navy and Royal Navy 

submarines. 

2. Characteristics of Tomahawk Land Attack Missile 

The TLAM (Figure 1) is a long range, subsonic cruise missile designed for land 

attack warfare.  It was designed to hit strategic targets day and night with a minimum of 

collateral damage by flying extremely low altitudes at high subsonic speeds and piloting 

over an evasive route by several tailored mission-guidance systems.  It is able to convey a 

1,000 pound warhead to a range of approximately 1,000nm with pinpoint accuracy. 
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Figure 1.   Tomahawk Land Attack Missile [Onwardoverland, 2004] 

 

Some TLAM characteristics [Navy Office of Information, 2004.] are as follows: 

• Unit Cost: Approximately $569,000 (FY99 $) 

• Length: 18 feet 3 inches (5.56 m); with booster: 20 feet 6 inches (6.25 m) 

• Weight: 2,900 pounds (1,315.44 kg); 3,500 pounds (1,587.6 kg) with booster 

• Diameter: 20.4 inches (51.81 cm) 

• Wing Span: 8 feet 9 inches (2.67 m)  

• Speed: Subsonic - about 550 mph (880 km/h) 

• Power Plant: Block II/III TLAM-A, C, D: Williams International F107 cruise Block 
IV TLAM-E: Williams International F415 cruise turbo-jet engine, ARC solid-fuel 
booster 

• Range: Block II TLAM-A:1,350 nm (1,500 statute miles, 2,500 km) 

• Block III TLAM-C:900 nm (1,000 statute miles, 1,600 km) 

• Block III TLAM-D:700 nm (800 statute miles, 1,250 km)  

• Block IV TLAM-E:900 nm (1,000 statute miles, 1,600 km) 

• Guidance System:  

• Block II TLAM-A: Inertial Navigation System (INS) Terrain 
Contour Matching (TERCOM)    

• Block III TLAM-C, D:INS TERCOM Digital Scene Matching 
Area Correlation Global Positioning Satellite System (GPS) 

• Block III TLAM-C, D:INS TERCOM GPS 

• Warheads:  

• Block II TLAM-N: W80 nuclear warhead 
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• Block III TLAM-C: 1,000-pound class unitary warhead  

• Block IV TLAM-E: 1,000-pound class unitary warhead 

• Block III TLAM-D: Conventional submunitions dispenser with 
combined effect bomblets 

• Date Deployed:  

• Block II TLAM-A: Initial Operational Capability (IOC) in 1984 

• Block III: IOC in 1994 

• Block IV: Expected 2004  

B. FIRING UNITS 
TLAMs can be fired from ships and submarines.  Some characteristics of these 

firing units are shown in Figure 2. 

 

TYPE Forward 
Launcher

Aft 
Launcher

Number of 
VLS Cells 

Total 
Number 
of Half 

modules

Maximum 
Salvo Size

Spruance Class Destroyer (DD-963) Full None 61 16 16

Arleigh Burke Class Guided Missile 
Destroyer (DDG-51) Half Full 90 24 24

Ticonderoga Class Guided Missile 
Cruiser(CG-47) Full Full 122 32 32

Surface Combatant for the 21st 
Century(SC 21)

TYPE Installed 
CLS

Number 
of CLS 

Capsules 

Number of 
Torpedo 
Tubes

Internal 
Weapon 
Capacity 
(at least)

Maximum 
Salvo Size

LA 688-718 No 0 4 20 4
LA 719-773 Yes 12 4 20 16
Seawolf No 0 8 40 8

TLAM FIRING UNITS

SU
B

M
A

R
IN

ES
   

 
(S

SN
)

SH
IP

S

Planning to be replaced by Arleigh and Ticonderoga in 
2004, with 128 VLS cells

 
Figure 2.   TLAM Firing Units.  

Ship Vertical Launching System (VLS) offer more storage capacity than submarines, 
which may or may not have a Canister Launching System (CLS).  [Arnold, 2000] 
 

1. Ships 
Ships can store more TLAMs than submarines.  They can also maintain better 

operational communication capabilities in order to coordinate TLAM missions with other 
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firing units and the Tomahawk Strike Coordinator (TSC).  Ships can be considered as the 

main TLAM firing units. [Arnold, 2000.] 

TLAMs on ships are launched from a Vertical Launching System (VLS).  

Depending on its type, a ship may have a forward launcher only or both aft and forward 

launchers.  A launcher can be half-size or full-size depending on the type of ship.  The 

basic component of a launcher is called a module.  A module provides power and 

computer connections for each weapon to be fired from the cells in the module. Modules 

may be of standard type or crane type. The standard module is divided into two half-

modules and each half-module is divided into four cells. In the crane module, the crane 

occupies cells “6” to “8” (see Figure 3). Thus, the crane module has a total of two half-

modules and five cells.  Each cell can store only one TLAM.  Half-size launchers have 

four modules, eight half-modules, 29 cells and can store up to 29 TLAMs, whereas full-

size launchers have eight modules, 16 half-modules, 61 cells and can store up to 61 

TLAMs (see Figure 4). [Arnold, 2000.] 

 

     

 

8 7 6 5

1 2 3 4

    

 

1 2 3 4 

5 CRANE 
  

Figure 3.   Standard and Crane Modules.   
The basic unit of the VLS is a module.  The standard module is divided into two half-
modules consisting of cells “1-4” and “5-8” respectively. In a crane module, cells “6-8” 
are occupied by the crane and cell “5” is the only one available in the half-module, while 
the other half-module consists of cells “1-4.” [Arnold, 2000] 
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VERTICAL LAUNCHING SYSTEM (FULL)              VERTICAL LAUNCHING SYSTEM (HALF) 

Figure 4.   Full-Size and Half-Size VLS Layouts.  
A full launcher consists of eight modules whereas a half-size launcher consists of four 
modules.  Both launchers have one crane module with 5 cells. The circled cells are 
designated as “Aft, 3, 5,” and “Forward, 8, 4.”  [Arnold, 2000] 
 

Salvo size refers to the number of TLAMs that can be aligned and fired by a firing 

unit during any conflict time window (typically a 45-minute period).  Due to VLS’s 

design and power limitations, only one missile can be fired from a half-module during a 

window.  The tasks that are to be aligned within the same window are said to be near-

simultaneous or to conflict with each other (see Section D for details).  Because of half-

module power constraints, a full-size launcher has a maximum salvo capability of 16 

missiles during any window, while a half-size launcher’s salvo is eight missiles. [Arnold, 

2000.] 
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2. Submarines 

Submarines can approach targets stealthily, but they must be close to the surface 

with antennas above the water when firing TLAMs.  They reveal their location after the 

first firing. Submarines may have communication problems with the TSC in the 

operational area: for example, a TSC’s short-notice order may not be received on time 

due to limited communication capability for security reasons. [Arnold, 2000.] 

Submarines have two assets to align TLAMs: torpedo tubes and canister capsules.  

All U.S. Navy attack submarines (SSNs) have the capability of firing TLAMs from their 

torpedo tubes [See Figure 5].  A TLAM can be loaded into a torpedo tube, and then 

aligned and fired like a torpedo.  Torpedo tubes can be reloaded with TLAMs carried on 

the submarine. All torpedo tubes on a submarine are capable of launching TLAMs.  

However, in order to maintain enough self-defense capability, a commanding officer 

might prefer not to dedicate all torpedo tubes to TLAM missions. [Arnold, 2000.] 

In addition to torpedo tubes, Los Angeles class submarines with hull number of 

719 (or higher) have a Capsule Launching System (CLS) that provides 12 canister 

capsules exclusively for firing TLAMs (see Figure 6) [Wingeart, 2001].  The CLS on a 

submarine is similar to the surface ship’s VLS and cannot be reloaded at sea.  Unlike a 

ship VLS, a submarine CLS is not restricted by power constraints, so all missiles in CLS 

cells may be aligned, if necessary, within a conflict time window.  
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Figure 5.   Cutaway View of a Torpedo Tube Room.  
This Los Angeles Class Submarine has four torpedo tubes (TB1,…,TB4).  The ordnance 
is stored in the torpedo room. Five CII TLAMs and ten CIII TLAMs ordnance are stored 
in this torpedo room. [Arnold, 2000]  
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Figure 6.   Capsule Launching System .  

This CLS has 12 capsules; each can launch all current blocks and variants of TLAMs and 
is not limited by any power constraint. [Arnold, 2000]  
 
C. PREDESIGNATION 

Predesignation is the assignment of land-attack missiles (on ships and 

submarines) to target aim-points.  This decision process has two phases: (1) the allocation 

of the TLAMs to the firing units, considering all firing units and tasks simultaneously, 
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and (2) given the firing unit allocation from Phase 1, a specific allocation of tasks to 

missiles.  The models presented in earlier works and in this thesis address the final 

allocation to specific missiles on firing units, which is the ultimate goal of Phase 2. 

When the U.S. National Command Authority (NCA), formed by U.S. President 

and the Secretary of Defense, authorizes a strike, the authorization passes down through 

the chain of command via the Chief of Naval Operations (CNO) and a regional fleet 

Commander-in-Chief (CINC) and eventually to the Battle Group TSC.  To begin Phase 1, 

the NCA or CINC provides the TSC the following information: a prioritized list of 

targets, a list of aim-points at the target, the desirable and feasible TLAM types, the 

number of missiles per aim-points, missile time on the target, and missile assignment 

redundancy requirement. [Arnold, 2000.] 

The TSC predesignates the aim-points to firing units by selecting a set of pre-

planned missions that meet NCA or CINC criteria.  A pre-planned mission defines the 

target, aim-points, block, warhead and launch area [Arnold, 2000].  Predesignation 

considers the geo-graphical nearness of the candidate firing units to aim-points, the 

inventory and location of TLAMs aboard each firing unit, the limitations of preparing and 

firing particular missiles, the flight route coordination among TLAMs and other tactical 

concerns [Brown et al., 2001].  The other important issue to be considered by the TSC is 

to leave the combat units with a maximum residual salvo size after a strike, individually 

and as a battle group.  The TSC tries to preserve as many remaining salvos as possible for 

each missile type on each firing unit that will remain with the battle group in the 

operation area.  The TSC also avoids predesignations that interfere with other duties of 

the firing units and attempts to expend TLAMs from the firing units that will soon be 

departing the theater.   

D. STRIKE PLANNING CONSIDERATIONS 

1. General Considerations 
A 10-character alphanumeric code, known as the Basic Encyclopedia Number 

(BEN), is used to designate each target chosen for attack. [Wingeart, 2001.]  For 

example, the BEN of “Target 1” may be 3004005000.  The TSC determines the aim-

points to refine the impact points of TLAMs on the target and the best TLAMs suited to 
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attack the targets.  In addition, the TSC must determine the missions required to hit the 

aim-points he or she designates, the variants and total number of TLAMs to fire, and the 

desired execution time at each aim-point.  

An 11-digit number known as the Mission Identification Number (MIN) specifies 

each task (also called mission) and associated list of missile variants that can be used to 

accomplish the assigned tasks. [Arnold, 2000.]  Feasible missile variants for the task are 

listed on the Missile Mission Matching (M3) list.  Every task has a list that indicates the 

relative desirability of all capable missile variants.  The TSC should use the least capable 

missile in order to maximize residual salvo capabilities, as long as this choice does not 

interfere with other priorities.  For instance, if the decision should be either to select a 

Block C-II or a Block C-III TLAM, a Block C-II is preferred since it has a less-capable 

warhead and shorter range than the Block C-III missile.  

2. Near-Simultaneous Tasks 
As explained in Section B, the number of TLAMs fired from a VLS launcher on a 

ship is restricted by a power constraint, which allows only one TLAM to be aligned at 

once per half-module.  From torpedo tubes on submarines this number is precisely the 

number of torpedo tubes.  In this context, at once means within a pre-specified 

conflicting time window, typically 45 minutes.  

A task has a launch time window defined by an earliest time to launch (ETL) and 

latest time to launch (LTL). [Kubu, 2001.]  These are derived from the required arrival 

time at the aim-point and missile flight parameters.  Although it would be desirable to 

fully employ this information to add flexibility to the predesignation process, our 

approach is a simplification of the time window specification.  This is due to the fact that 

we will not optimize the exact time within the ETL-LTL window.  Instead, we consider 

an average time to launch (ATL), calculated as the average of earliest and latest times to 

launch.  If the average time to launch between any two tasks is less than the given 

conflicting time window, they are considered near-simultaneous tasks, and they are 

incorporated into a so-called conflict task set or near-simultaneous task set.  A task may 

be in more than one of these sets.  
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The following example clarifies the concept of conflict sets and near-

simultaneous tasks (see Figure 7).  In this example, we assume the conflicting time 

window is 45 minutes.  While some tasks are in only one near-simultaneous task set, 

others are in more than one of these sets, depending on their ATLs.  Assuming that C-II 

and C-III are valid weapons for all of our tasks, by combining Figures 7 and 8 we 

conclude that, for example, the TSC cannot allocate tasks “150-150-15000” and “155-

155-15500” to the module in Figure 8 due to power constraints.  However, the TSC may 

allocate tasks “155-155-15500,” “160-160-16000” and “175-175-17500” to this module. 

 

TASK CODE 
(MIN)

ETL (Earliest 
Time to 
Launch)

LTL (Latest 
Time to 
Launch)

ATL (Average 
Time to 
Launch)

Average 
Time (min) 

Since 
8/19/2000  

00:00:00 AM

Conflict 
Task Set 

Number (s)

150-150-15000 08/19/2000 00:00 08/19/2000 00:10 08/19/2000 00:05 5 1
155-155-15500 08/19/2000 00:00 08/19/2000 00:10 08/19/2000 00:05 5 1
160-160-16000 08/19/2000 00:30 08/19/2000 00:40 08/19/2000 00:35 35 1,2
165-165-16500 08/19/2000 00:30 08/19/2000 00:40 08/19/2000 00:35 35 1,2
170-170-17000 08/19/2000 00:30 08/19/2000 00:40 08/19/2000 00:35 35 1,2
175-175-17500 08/19/2000 01:00 08/19/2000 01:10 08/19/2000 01:05 65    2,3
180-180-18000 08/19/2000 01:00 08/19/2000 01:10 08/19/2000 01:05 65    2,3
185-185-18500 08/19/2000 01:00 08/19/2000 01:10 08/19/2000 01:05 65    2,3
190-190-17000 08/19/2000 01:00 08/19/2000 01:10 08/19/2000 01:05 65    2,3
225-225-22500 08/19/2000 01:30 08/19/2000 01:40 08/19/2000 01:35 95       3
230-230-23000 08/19/2000 01:30 08/19/2000 01:40 08/19/2000 01:35 95       3
235-235-23500 08/19/2000 01:30 08/19/2000 01:40 08/19/2000 01:35 95       3  

Figure 7.   Conflicting Sets of Tasks.  
ATL is calculated by averaging ETL and LTL. We assume that two tasks whose ATLs 
are within 45 minutes of each other are near-simultaneous. In this example, tasks “150-
150-15000” through “170-170-17000” are all conflicting with each other.  Thus, they 
belong to conflict set #1. The same occurs for tasks “160-160-16000” through “190-190-
17000,” which defines conflict set #2. Notice that some tasks belong to more than one 
conflict set [Excerpt from TLAM Documentation, 2002].  
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Figure 8.   Module with an Empty Half-Module and Full Half-Module. 

The two C-IIs and two C-IIIs in the upper half-module can be used for non-near-
simultaneous tasks.  For example, only one of tasks “150-150-15000” and “155-155-
15500” (from Figure 7) can be allocated to the upper half-module. 
 

3. Missile Redundancy 
One of the most important considerations for the TSC is to decide the amount of 

redundancy for each task of a target. Intuitively, the TSC wants to allocate more missiles 

to high priority targets in order to ensure their destruction in case some missiles fail to 

launch or miss the target.  This leads to consideration of primary, ready-spare, and back-

up task-parts, as well as a special type of task-parts called ghost.  A primary task-part is 

designated to be launched at a target, whereas ready-spare and back-up task-parts are 

only executed in the case of primary task-part failure.  Primary and ready-spare task-parts 

must be assigned to the same firing unit, whereas back-up task-parts must be assigned to 

a different firing unit than the primary and ready-spare (if any) task-parts. [Arnold, 2000.] 

Multiple missiles may be required for each task-part.  The ready-spare and back-

up task-parts are aligned simultaneously with the primary task-part.  Ready-spare task-

parts are launched immediately if the missile associated with the primary task-part fails, 

and back-up task-parts are launched if the missiles associated with the primary task-part 

and ready-spare (if any) fail.  Ghost task-parts can only be assigned to a special type of 

tasks, called ghost tasks.  A ghost task enables one missile to provide redundancy for 

multiple tasks and multiple task-parts concurrently.  A ghost task is fired when ordered 

by the TSC.  For some calculations (such as expected residual salvo), we assume that all 

missiles associated with primary task-parts are fired, and those associated with ready-

spare, back-up and ghost task-parts are not. [Arnold, 2000.] 
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4. Other Considerations 

There are some doctrinal constraints applying to targets and tasks. Each target is 

designated either as restricted or unrestricted.  All the task-parts in tasks associated with 

unrestricted targets may be spread among the geo-feasible firing units.  Restricted targets 

have their tasks and associated task-parts allocated to a limited number of firing units, 

which is specified by the TSC.  In addition, if any task-part of a task in a restricted target 

is left unassigned, all the other task-parts of that task will also be considered as 

unassigned. [Arnold, 2000.] 

For each task-part with multiple missile requirements the TSC specifies whether 

the missiles for the task-part are separable (formerly referred to as split) or not across 

firing units.  If missiles of any task-part are non-separable, all missiles of that task-part 

should be assigned to the same firing unit.  For example, in Figure 9, “Target A” has two 

tasks: “Task 1” and “Task 2.”  These tasks have their own task-parts (e.g., there are two 

primary missiles required for “Task 1”). 

 

Allocated to 
Firing Unit 2 

Allocated to 
Firing Unit 1 

Allocated to 
Firing Unit 1 

                                                                                 TARGET A  

                                             TASK 1                                 TASK 2                  
           
           
                      
 Primary                Ready-spare         Back-up               Primary              Ready-spare          Back-up   

          (SEPARABLE)                                                              (NON-SEPARABLE) 
                                                                                                                                     

         PR1       PR2                  RS1                  BU1                PR1    PR2             RS1     RS2         BU1   BU2

 
Figure 9.   Separable and Non-separable Tasking.  

In the figure, primary task-parts in “Task 1” are deemed “separable,” but primary task-
parts in “Task 2” are “non-separable.”  Thus, “PR1” and “PR2” in “Task 1” can be 
allocated either to the same firing unit or to different firing units, whereas “PR1” and 
“PR2” in “Task 2” must be allocated to the same firing unit. 
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If the primary task-part in “Task 1” is deemed separable, we can allocate both 

“PR1” and “PR2” to either the same firing unit or to different firing units. On the other 

hand, if the primary task-part in “Task 2” is deemed non-separable, both “PR1” and 

“PR2” must be allocated to the same firing unit.  

E. SUMMARY OF PAST WORK 
Since 1998, a group of faculty and students at the Naval Postgraduate School 

(NPS) Operations Research Department has contributed to the development of a decision 

support algorithm for Tomahawk Predesignation, under the sponsorship of the Naval 

Surface Warfare Center, Dahlgren Division (NSWCDD).  A series of student theses 

documents this effort.  Most of these theses were advised by Professor Alexandra M. 

Newman, now with the Colorado School of Mines. 

LT Scott Kuykendall [1998] breaks ground by addressing Tomahawk 

predesignation with a mixed-integer programming (MIP) formulation with elegant 

simplicity.  LT Kuykendall’s fleet predesignation experience motivated him as follows: 

(i) current paper-and-pencil predesignation process is inefficient and error-prone, and (ii) 

current predesignation software is neither user-friendly nor satisfactory, since it produces 

predesignations that can be trivially improved by inspection [Wu et al., 2002].  

Kuykendall’s work considers a single-ship scenario and aims to maximize residual strike 

capability (also referred to as follow-on salvo or residual salvo).  He proves this scheme 

yields better solutions than the manual predesignation method; yet, his MIP does not 

address all relevant objectives. 

LT Brian Kirk [1999] develops a multi-objective (MO) MIP for automatic surface 

ship TLAM Phase I predesignation at the fleet level.  His model is based on eight 

objectives, reviewed by Tactical Training Groups Atlantic and Pacific, presented below 

in descending order of importance [Wu et al., 2002]: 

• Minimize the number of unassigned tasks (actually task-parts). 

• Minimize the use of units already occupied with other operations or not in 
geo-graphical proximity to the strike.  

• Maximize the allocation of tasks across so-called expend firing units. 
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• Use the missiles from firing units designated as non-expend so as to level the 
number of missiles remaining across these firing units. 



• Spread primary task-part missiles across as many firing units as possible to 
prevent single-point failures among primary task-part allocation. 

• Spread back-up task-part missiles across as many firing units as possible to 
prevent single-point failures among back-up task-part allocation. 

• Use the least capable missile possible for each mission. 

• Maximize the residual salvo capability.  

Kirk applies three solution methods.  First, he attempts to solve the model as a 

single, monolithic problem consisting of a combination all the objectives into a single 

objective function, where higher-priority goals have greater weights.  He finds that this 

technique does not produce sensible answers for large scenarios, and solution times are 

prohibitive.  Next, he implements a Hierarchical Restriction by solving for a goal at a 

time. He achieves solutions of reasonable quality by using this technique but solution 

times are still too large to be operationally useful.  In order to lessen the solution times, 

Kirk implements a Heuristic Hierarchical Restriction method on the MO MIP, which 

produces faster solutions compared to those of previous techniques, but not fast enough 

to be used in an operational setting. [Wu et al., 2002.] 

LT Bertram Hodge [1999] introduces a new heuristic, based on a prioritized target 

list that he uses to mimic the optimal decisions of Kirk’s most comprehensive model. 

[Brown et al., 2001.] This fast, heuristic algorithm selects firing units and then 

predesignates targets from the list in a single pass.  Hodge uses an algorithm to select 

ships and then performs task allocations based on a single pass of a prioritized task list.  

His heuristic produces solutions roughly 20% worse than Kirk’s Hierarchical Restriction 

for all objective function values.  As a result, his model reduces solution times at the cost 

of solution quality. 
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LT Andrew Arnold [2000] improves the performance of Hodge’s heuristic by 

modifying the heuristic algorithm to improve solution quality.  Arnold’s heuristic extends 

Hodge’s fast heuristic to include submarines as firing units and ghost missions as task-

parts.  Arnold introduces the concepts of Target (as a group of tasks with common 

constraints), as well as the possibility of multiple missiles assigned for any task-part.  He 

also introduces the concept of missile separability by task-parts, and allows the TSC to 

specify part of the allocation. [Wu et al., 2002] 



LT Justin A. Kubu [2001] enhances Arnold’s heuristic by introducing diagnoser 

and prescriber modules that provide the TSC with possible reasons why a task cannot be 

allocated by the heuristic algorithm.  Although the heuristic cannot determine whether a 

feasible allocation under the given conditions exists, it prescribes modifications to 

facilitate a complete allocation of tasks.  Prescriptions include, for example, shifting the 

launch time of a task for situations in which the heuristic predesignation does not provide 

a complete allocation.  

LT Paul H. Wingeart [2001] enhances Arnold’s heuristic by implementing two 

computer-assisted allocation methods: (i) task-part to firing unit, and (ii) firing unit to 

task-part.  Wingeart validates his heuristic solutions with exercise data TEXAS 

THUNDER 00-6 and RIMPAC 00-3 and shows that automated allocation yields 

solutions superior to those of manual predesignation in these fleet exercises. 

Consolidated specifications for the problem data and heuristic algorithm can be 

found in TLAM documentation [2002]. 

F. THESIS OUTLINE 

The rest of the thesis is organized as follows: Chapter II introduces the problem 

specifications that serve as basis for our mathematical formulation.  Then we introduce 

the problem formulation as a MIP MO optimization model.  We present the so-called 

hierarchical and combined-goal formulations for the problem.  Chapter III summarizes 

the results for all test cases from our implementation in GAMS [Brooke et al., 1996].  We 

also describe a variable partition technique called Fix-and-Relax to accelerate 

convergence in some cases. Chapter IV presents our conclusions and recommendations 

for future work. 
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II. MIXED-INTEGER LINEAR OPTIMIZATION MODEL 

In this chapter, we present the mathematical formulation of our TLAM 

predesignation problem as a MO MIP optimization model.  To set the stage for the model 

formulation, we first list the complete specifications of the predesignation problem, as 

addressed in the remainder of the thesis.  

A. PROBLEM SPECIFICATIONS: DEFINITIONS AND ASSUMPTIONS 

1. Near-Simultaneous Tasks 

• Each task has an earliest time and a latest time to launch (ETL, LTL).  

• An average time to launch (ATL) (calculated as the midpoint between ETL and LTL) 
can be used as hypothetical time to determine near-simultaneous (also called 
conflicting) tasks. 

• If the difference in the ATL for two given tasks is less than the given conflicting time 
window (typically 45 minutes), both tasks must belong to a common near-
simultaneous task set.   

• A task may be in more than one near-simultaneous task set. 

2. Firing Units 

• There are two types of firing units: ships and submarines. 

• Some firing units incur a so-called employment penalty. (Related objective: Goal #2.) 

• Each firing unit is defined as either expend or non-expend.  It is preferable to use 
weapons from expend firing units. (Related objective: Goal #3.) 

 

FIRING UNITS 
           
           
           
           
    SHIPS                 SUBMARINES  
           
           
Half-Modules          
  (Weapons)         Torpedo Room        Canister Capsules 
             (Weapons)              (Weapons) 
            

Figure 10.   Firing Units.  
There are two types of firing units: Ships and submarines. Ships stores weapons in cells 
in half-modules, whereas submarines have two types of storage for weapons: torpedo 
room and canister capsules. 

 17



 
3. Ships 

• Each ship has a given number of half-modules, depending on ship type as shown in 
Figure 2.  Each half-module may contain up to four TLAMs, and these can be of 
different type (see weapon types below). 

• The number of TLAMs fired from a ship is restricted by a power constraint, which 
allows only one TLAM to be aligned per half-module within a conflicting time 
window. 

4. Submarines 

• Each submarine can fire TLAMs from its torpedo tubes and from its canister capsules 
(if any).  The number of tubes and capsules depends on the submarine type. 

• Torpedo tubes can fire the TLAMs available in the torpedo room.  The number and 
type of weapons in the torpedo room are submarine dependent. 

• The maximum number of weapons that can be fired from the torpedo tubes per 
conflicting time window is precisely the number of torpedo tubes. 

• Each canister capsule can fire only one weapon (the one that is already loaded in the 
capsule, if any).  

• Canister capsules on a submarine are not affected by conflicting time windows. 

• Each submarine may or may not be designated for back-up task-part allocation by the 
Tomahawk Strike Coordinator (TSC).   

5. Targets 

• Each target consists of one or more tasks. 

• Each target is designated either as restricted or unrestricted.  A restricted target needs 
all tasks and task-parts to be allocated to a limited number of firing units, given 
independently for each restricted target.  An unrestricted target has no limitation in 
this regard.  

• A target is deemed allocated when all of its tasks have been allocated.  If the target is 
unrestricted, it is allowed (although not desirable) that some tasks in the target are 
allocated while others are not. However, if the target is restricted, then all or none 
tasks of the target tasks should be allocated. 

6. Tasks, Task-Parts and Task-Part Missiles 

• Each task belongs to a specific target. 

• There are four types of task-parts: primary (PR), ready-spare (RS), back-up (BU) and 
ghost (GH). (See List of Terms and Abbreviations.) 

• Each task may have one or more types of task-parts.  

• Each task-part in a task requires one or more missiles.  
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• Every task must have either a PR task-part, or a GH task-part, but not both.  The 
former is called a regular task, and may also include the following types of task-parts: 
RS and/or BU.  If the task has a GH task-part, it is called a ghost task, and it cannot 
include any other type of task-part (see Figure 11).   

• For regular tasks, there cannot be more RS missiles required than PR missiles 
required. 

• A task is considered allocated only when all of its task-parts have been fully 
allocated, i.e., when all the missiles required for each of its task-parts have been 
allocated.  Otherwise, the task is deemed unallocated. (Partial allocation of a task is 
not allowed.) (Related objective: Goal #1.) 

• PR and RS task-parts must be allocated to the same firing unit in pairs: PR1-RS1 
first; then PR2-RS2, and so forth. The nth primary task-part (PRn) can be allocated 
alone if RSn is not required. 

• There is no limit in the number of missiles required for a BU task-part in a regular 
task, nor it is required that a RS task-part exists for the task in order to require one or 
several BU task-parts. 

• BU task-parts (for a given task) must be allocated to firing units excluding all of the 
firing units used for the PR task-parts (for the same task).  

• Each task-part of each task is classified as separable or non-separable. All the missile 
requirements of a non-separable task-part must be allocated to the same firing unit. 
(Separable and Non-separable are sometimes referred to as split and non-split, 
respectively)  
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TARGET                                                                                                  TARGET LEVEL 
 
 
                TASK 1(Regular)                   TASK LEVEL 
             

            
            
           Primary   Ready-spare     Back-up                          TASK-PART LEVEL

                                                                                                        
                                                                                                                                         
          PR1  PR2                  RS1                 BU1       TASK-PART 
                                                                                                                 MISSILE LEVEL  
                  TASK 2(Regular)  
             

            
            
           Primary   Ready-spare     Back-up                           

                                                                                                        
                                                                                                                                         
                 PR1                    RS1                 BU1 
 
                                                TASK 3(Ghost)    
             

        Ghost       
            
                     

  GH1    GH2    GH3 

 

 

 
Figure 11.   Tasking Levels.  

 
7. Launch Areas 

• Each firing unit is assumed to be located in a unique launch area, and cannot be 
moved to a different area. 

• Each launch area has a list of targets that can be attacked from the area.  A firing unit 
in the launch area of a target is considered geo-feasible. 

• Primary task-parts allocated to firing units in a particular area can be characterized as 
spread or not spread.  This refers to whether or not spreading the primary task-parts 
across the different firing units in the area is desired. (Related objective: Goal #5.) 

• Back-up task-parts allocated to firing units in a particular area can also be 
characterized as spread or not spread. (Related objective: Goal #6.) 
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8. Weapons 

• Each missile required by any task-part in a given task must be allocated a weapon 
type from the so-called M3 (missile to mission matching) list.  This list is task-
dependent. 

• Each available weapon in the M3 list for the task has an associated priority to be used 
that makes it more or less desirable to use compared to the other weapons on the list. 
(Related objective: Goal #7.) 

• Each weapon type has a value that is used to compute the residual salvo value after 
allocation.  Residual salvo computation must take into account half-module and 
torpedo tube power-constraints.  Thus, only the most valuable weapon from each 
half-module, and a limited number of weapons from the torpedo room (as many as 
torpedo tubes) must count for the residual salvo computation. (Related objective: 
Goal #8.) 

9. Tomahawk Strike Coordinator Allocation 
The TSC may specify mandatory allocation of selected task-part missile 

requirements by providing, for each of these requirements, the following information: 

• A ship, a half-module, a weapon type (for allocation to ships), or 

• A submarine and either a weapon type in the torpedo room or a weapon type in 
canister capsules (for allocation to torpedo tubes or canister capsules on submarines, 
respectively). 

10. Goal Specifications 

a. Goal #1 
“Meet All Assigned Tasking” - To date, this goal has been addressed by 

minimizing the number of “unassigned task-part missile requirements.” This 

interpretation is assumed in our formulation.  

In some cases, however, it might be desirable to address Goal #1 by 

minimizing some of the following: 

• A weighed average of unmet tasks-parts.  For example, consider the following task-
part missile requirements: 

• Task 1: PR1, BU1, BU2, BU3 

• Task 2: PR1, PR2, PR3 

 

Since a task cannot be allocated unless all of its task-parts are allocated, 

currently it is deemed more important to allocate the four missiles required for Task 1 
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(even if three of them are BUs) than the three missiles required for Task 2, all of which 

are PRs.  This can be remedied by weighing the task-parts. 

• The number of unmet tasks, instead of the number of unmet task-parts.  These two 
outputs might be significantly different, depending on how evenly the missile 
requirements are spread among the tasks. 

• The number of targets that cannot be fully allocated.  (Non-restricted targets allow 
some tasks to be allocated even if other tasks in the target cannot be allocated.) 

b. Goal #2 

“Minimize the Use of Firing Units Currently Engaged in Other Tasking” - 

Currently, this goal has been accomplished with the use of employment penalties.   

c. Goal #3 
“Maximize Missiles Allocated from Designated Expend Firing Units” - 

Remark: Only allocated missiles for PR task-parts are deemed used.  That is, even if 

other RS, BU and GH missiles are allocated, these do not become part of the preliminary 

count of fired missiles. 

d. Goal #4 
“Level the Number of Missiles Remaining on Non-Expend Firing Units” - 

Remarks: Unallocated missiles along with those missiles allocated to RS, BU and GH 

task-parts are deemed remaining.  The level definition is based on the total difference 

between the arithmetic average of the remaining missiles across all non-expend firing 

units and the remaining missiles on each non-expend firing unit (even if it is a firing unit 

with positive employment penalty). 

e. Goal #5 

 “Spread Primary Task-Part Missiles Among As Many Firing Units As 

Possible, in Launch Areas So Designated.” 

f. Goal #6 
 “Spread back-up task-part missiles among as many firing units as 

possible, in launch areas so designated.” 

g. Goal #7 
“From among all feasible missile types for each task, choose the least 

capable missile, so as to preserve more capable missiles for the future.” 
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h. Goal #8 
“Maximize residual salvo capability” - Remark: Only allocated PR task-

parts are used to compute the post-allocation salvo value. To do this for ships, we use the 

most valuable weapon in each half-module.  For submarines, we use the most valuable 

weapons in the torpedo room that can be fired simultaneously from the torpedo tubes, and 

all the weapons in the canister capsules.   

B. TLAM ALLOCATION MODEL 
In this section, we present the problem formulation.  In order to simplify the 

presentation, we have divided the formulation into several parts driven by the goal and/or 

the feature in the specifications:  Initially, we present a basic formulation for the first goal 

with limited problem features. Then, we add other goals and specifications such as 

submarines, restricted targets, TSC specifications, etc. The full Allocation Model is 

shown in Appendix A. 

1. Basic Model with Goal #1 
In this model, we only consider ships as firing units, and goal #1 in the objective 

function. 

• Indices 

,S  set of ships; Ss ∈  

,H   set of half-modules; { }1,2,3,...∈ =h H  

,G  set of targets; Gg ∈  

,T  set of tasks; Tt ∈  

,P  set of task-parts; { }, , ,p P PR RS BU GH∈ =  

,M  set of task-part missile requirements; { }, 1,2,3,...M′∈ =m m  

,W  set of weapon types; Ww∈  

,I  set of subsets of near-simultaneous tasks; i I∈  

,A  set of launch areas; Aa ∈  

,K    set of goals; { }1, 2,...,8k K∈ = .  (Remark: We introduce the set of 
all goals although we only formulate goal #1 here.  The rest of the 
goals will be formulated later.) 
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• Sets 

,G
gT   subset of tasks for target g; T  TG

g ⊂

,I
iT   subset of near-simultaneous tasks in group i; T  TI

i ⊂

,A
aG   subset of targets which are geo-feasible from area a;  G G  A

a ⊂

,T
tW   subset of weapons that can be used for task t; W W  T

t ⊂
 
• Data 

,S
shwn   number of weapons of type w in half-module h on ship s 

,H
sm    number of half-modules on ship s 

,M
tpn    number of missiles required for task-part p of task t 

,S
sa    area for ship s 

 
• Derived Data and Sets 

,tg  target for task t (i.e., G
gt T∈ )    

,T
tS  subset of geo-feasible ships for task t; { }S

s

T A
t t a

S s g G= ∈  

 
• Decision Variables 

,S
shwtpmX  equals 1 if a weapon of type w in half-module h of ship s is 

used to allocate missile m of  task-part p in task t, 0 otherwise 

,S
stpmY  equals 1 if missile m of task-part p in task t is allocated to ship 

s, 0 otherwise  

,tpmU   equals 1 if task t is unmet, 0 otherwise 

,kZ  objective function value for goal k K∈ . (Remark: We 
introduce decision variables for all objective functions here 
although we only use goal #1 in this model).  

 

• Formulation 

Goal k = 1: Minimize the total number of unmet task-parts: 
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1 1 1
1

min , where
M
tpn

tpm
t p m

Z Z Z∗

=

= =∑ ∑ ∑ U  

Subject to: 

- Ensure weapon availability for tasks allocated to half-modules: 

1.1.  
1,

,
M
tp

T
t

T
t

n
S S
shwtpm shw

p ms St
w W

X n
=∈

∈

≤∑ ∑∑                  , , 1 , 0H S
s shws h w h m n∀ ≤ ≤ >   

- Establish the allocation at the firing unit level: 

1.2.  
1 0

,
H
s

T S
t shw

m
S S
shwtpm stpm

h w W n

X Y
= ∈ >

=∑ ∑                      , , , ,1T M
t ts t p m s S m n≤ p≤∀ ∈  

1.3.                            1,
T
t

S
stpm

s S

Y
∈

≤∑ , , 1 M
tpt p m m n≤∀ ≤  

- Ensure all (or none) of the task-parts in a task are allocated: 

1.4. 
T T
t t

S S
stp m stpm

s S s S

Y ′ ′
∈ ∈

=∑ ∑ Y                                      
{ }

, , 1 , 0,

for " ", " " , "1"

M M
tp tpt p m m n n

p PR GH m
′∀ ≤ ≤ >

′ ′∈ =
 

- Prevent near-simultaneous tasks in the same half-module: 

1.5. 
10 ,

1,
M
tp

S T
Ishw t

i T
t

n
S
shwtpm

p mwn s St T
w W

X
=> ∈∈

∈

≤∑ ∑ ∑ ∑             , , 1 H
ss h i h m≤∀ ≤          

-  Allocate each task-part missile requirement or take a penalty: 

1.6.         1,
T
t

S
stpm tpm

s S

Y U
∈

+ =∑ , , 1 M
tpt p m m n≤∀ ≤  

- Ensure primary and back-up task-part relations: 

1.7.                                                  1,S S
stpm stpmY Y ′ ′+ ≤

, , , ,1 ,1 ,

for " ", " "

T M
t tps t m m s S m n m n

p PR p BU

M
tp′′ ′∀ ∈ ≤ ≤ ≤ ≤

′= =
   

- Ensure primary and ready-spare task-part relations: 

1.8. ,S S
stpm stp mY Y ′=                             

, , ,1 ,

for " ", " "

T M
t tps t m s S m n

p PR p RS
′∀ ∈ ≤ ≤

′= =
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- Binary variables: 

1.9. { }0,1 ,s
shwtpmX ∈              , , , , , ,1 , , , 0, ,1T H T S

t s t shws h wt p ms S h m w W t T n p P m n≤ ≤ ∈ ∈ > ∈ ≤ M
tp≤

,

∀ ∈   

- Non-negative variables and bounds: 

1.10. 0 1    S
stpmY≤ ≤ , , , , , ,1T M

t ts t p m s S t T p P m n∀ ∈ ∈ ∈ ≤ ≤ p    

1.11. 0    1,tpmU≤ ≤ , , , ,1 M
tpt p mt T p P m n∀ ∈ ∈ ≤ ≤  

 
2. Goal #2 

• Data 

,S
sp  employment penalty for ship s   

• Decision Variables 

,S
sgZZ  equals 1 if ship s is engaged in any tasking in target g, 0 otherwise 

,S
sZ    equals 1 if ship s is used, 0 otherwise 

• Formulation 

Goal k = 2: Minimize the use of  penalty firing units:  

2 2 2min , where S S
s s

s

Z Z Z p∗ = = Z∑  

Additional constraints: 

- Calculate firing unit engagement in targets and in the overall allocation: 

2.1. ,S S
stpm sgY ZZ≤                , , , , ,1T M

t ts t p m g s S m n≤ p≤

S

∀ ∈  
 

2.2. ,S
sg sZZ Z≤                    ,s g∀  

(Remark: Engagement is calculated at the level of targets for its use in other 

specifications later in the formulation. For the purpose of calculating firing unit 

engagement in the allocation only, (2.1) and (2.2) can be combined into: 

, , , , ,1S S T M
stpm s t tpY Z s t p m s S m n≤ ∀ ∈ ≤ ≤ ) 

- Binary variables: 

2.3. { }0,1 ,S
sgZZ ∈            , ,s g s S g G∈∀ ∈  
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2.4. { }0,1 ,S
sZ ∈         s S∀ ∈  

 
3. Goal #3 

• Sets 

,ExpS   subset of expend ships;  ExpS S⊂

• Decision Variables 

 
,SE   total number of weapons allocated to primary task-parts from 

expend  ships  
• Formulation 

Goal k = 3: Maximize the number of weapons allocated from designated expend 

firing units: 

3 3 3max , where SZ Z Z∗ = = E  

Additional constraints: 

- Use of expend firing units for primary task-parts: 

3.1. 
1

,
M
tp

Exp T
t

n
S S

stpm
ms S t s S

Y E
=∈ ∈

=∑ ∑ ∑            for " "p PR=  

- Non-negative variables: 

3.2.  0SE ≥
 

4. Goal #4 

• Data 

,NExpn  number of non-expend firing units:  \NExp Expn S S=       

• Decision Variables 

,S
sRN  number of missiles on non-expend ship s that are not allocated 

to a primary task-part  
,RAVG   average of the residual number of missiles across non-expend 

firing units after allocation 
,S

sRD    difference between the residual number of missiles on ship s 
and RAVG     
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• Formulation 
Goal k = 4: Minimize the deviation from average of residual number of missiles 

on non-expend firing units: 

4 4 4
\

min , where
Exp

S
s

s S S

Z Z Z∗

∈

= = DR∑  

Additional constraints: 

- Compute absolute deviation from average number of residual weapons onboard 

each firing unit: 

4.1.   
1 1

,
MH
tps

T
t

nm
S S S
shw stpm s

h w mt s S

n Y
= =∈

− =∑ ∑ RN∑ ∑      \ , for " "Exps S S p PR∀ ∈ =

 
4.2.   

\ Exp

S NExp
s

s S S

RN n RAVG
∈

=∑  

 
4.3.   ,S S

s sRN RAVG RD− ≥ −       \ Exps S S∀ ∈
 
4.4.   ,S S

s sRN RAVG RD− ≤     ∀ ∈  \ Exps S S

- Non-negative variables: 

4.5.      0,S
sRN ≥ s S∀ ∈  

 
4.6.      0,S

sRD ≥ s S∀ ∈  
 
4.7.  0RAVG ≥
 

5. Goal #5 

• Sets 

,PRA  subset of areas whose primary task-parts are desired to be assigned 
to as many firing units as possible;  PRA A⊂

• Decision Variables 

,S
sPR  equals 1 if ship s is assigned to allocated any primary task-part, 0 

otherwise  
• Formulation 

Goal k = 5: Maximize the number of firing units that have been assigned to 

allocate primary task-parts in launch areas so designated: 
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5 5 5max , where
A S

s

S
s

a PR s a a

Z Z Z P∗

∈ =

 
 = =
 
 

∑ ∑ R  

Additional constraints: 

- Keep track of areas that must spread primary task-part missiles: 

5.1. 
1

,
M
tp

T
t

n
S S

stpm s
mt s S

Y PR
=∈

≥∑ ∑    , for "S PR
s "s a A p PR∀ ∈ =  

- Binary variables: 

5.2.      {0,1},S
sPR ∈ Ss∈∀  

 
6. Goal #6 

• Sets 

,BUA  subset of areas whose back-up task-parts are desired to be assigned 
to as many firing units as possible;  BUA A⊂

• Decision Variables 

,S
sBU  equals 1 if ship s is assigned to any back-up task-part, 0 otherwise 

• Formulation 

Goal k = 6: Maximize the number of firing units that have been assigned to 

allocate back-up task-parts in launch areas so designated: 

6 6 6max , where
A S

s

S
s

a BU s a a

Z Z Z B∗

∈ =

 
 = =
 
 

∑ ∑ U  

Additional constraints: 

- Keep track of areas that must spread primary task-part missiles: 

6.1. 
1

,
M
tp

T
t

n
S S

stpm s
mt s S

Y BU
=∈

≥∑ ∑    , for "S BU
ss a A p BU∀ ∈ = "  

- Binary variables: 

6.2.     {0,1},S
sBU ∈ s S∀ ∈  
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7. Goal #7 

• Data 
3 ,pm  weight of task-part p to match the M3 list position of for task-part p 

3 ,twm  M3 position of weapon  for task t T
tw W∈

• Formulation 

Goal k = 7: Minimize the missile to mission matching (M3) list position of all 

selected weapons: 

3 3
7 7 7

1 10 ,

min , where
MH
tps

S T
shw t

T
t

nm
S

p tw shwtpm
s h p mw n s St

w W

Z Z Z m m X∗

= => ∈
∈

= = ∑ ∑ ∑ ∑ ∑ ∑  

8. Goal #8 

• Data 

,wv  relative value of weapon w for residual salvo computation 

• Decision Variables 

,S
shwD  equals 1 if one or more weapons of type w remain on ship s in half-

module h after firing all primary task-part missiles,  0 otherwise 
• Formulation 

Goal k = 8: Maximize residual salvo capability: 

8 8 8
1 0

max , where
H
s

S
shw

m
S

w shw
s h w n

Z Z Z v∗

= >

= = ∑ ∑ ∑ D  

 

Additional constraints: 

- Calculate residual salvo size: 

8.1. 
1,

,
M
tp

T
t

T
t

n
S S S
shw shwtpm shw

ms St
w W

n X
=∈

∈

− ≥∑ ∑ D   , , 1 , 0, for " "H S
s shws h w h m n p PR∀ ≤ ≤ > =  

8.2.
0

1,
S
shw

S
shw

w n

D
>

≤∑     , 1 H
ss h h m∀ ≤ ≤  

- Non-negative variables and bounds: 

8.3.                           0 1,S
shwD≤ ≤ , , ,1 , , 0H T S

s t shws h w s S h m w W n∀ ∈ ≤ ≤ ∈ >  
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9. Restricted Targets 

• Sets 

,RG   subset of targets which are designated as restricted;   RG G⊂

• Data 

,FU
gn   maximum number of firing units to which a restricted target g can 

be allocated  
• Formulation 

 

Additional constraints: 

- Calculate firing unit engagement in the target: 

Same as constraint (2.1). 

9.1. ,S S
stpm sgY ZZ≤               , , , , ,1T M

t ts t p m g s S m n≤ p≤∀ ∈  

- Limit firing units for restricted targets: 

9.2.    ∀ ∈  ,S FU
sg g

s

ZZ n≤∑ Rg G

- Allocate all (or none) of the tasks in restricted targets: 

9.3.                   ,tpm t pmU U ′=
{ }0, for " ", " " , "1"

, ,
, , ,

M
tp

G R
g

n p PR GH m
t t g

t t T t t g G

> ∈ =
′∀

′ ′∈ ≠ ∈
 

 
10. Non-separable Tasking 

• Sets 

,NS
tP   subset of task-parts in task t that are not separable;  PP NS

t ⊂

• Decision Variables 
S
stpNS , equals 1 if all missile requirements for non-separable task-part p of 

task t are assigned to ship s, 0 otherwise     
• Formulation 

Additional constraints: 

- Ensure the allocation of all missiles for a non-separable task-part to the same 

firing unit: 
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10.1. 
1

,
M
tpn

S M S
stpm tp stp

m
Y n NS

=

=∑                         , , , , 2T NS M
t t tps t p s S p P n∀ ∈ ∈ ≥  

 
11. TSC Specifications 

• Sets 

,STSC  subset of six-tuples (s,h,w,t,p,m) such that the TSC specifies that 
task-part missile (t,p,m) must be allocated to weapon type w in 
half-module h on ship s.  

• Formulation 
Additional constraints: 

- TSC specifications: 

11.1.     ∀ ∈  1,S
shwtpmX = ( , , , , , ) Ss h w t p m TSC

 
12. Submarines 
Most sets and data for ships have an equivalent notation for submarines.  Model 

constraints can be extended in order to incorporate submarines.  Some of these extensions 

are immediate. Others, however, require more elaboration due to differences in 

specifications for ships and submarines.  Here is an example: 

• Indices 

,B  set of submarines; b B∈  

• Sets 

,T
tB  subset of geo-feasible submarines for task t;  BBT

t ⊂

• Data 

,BT
bwn  number of weapons of type w in the torpedo room of submarine b 

,BT
bm   number of torpedo tubes on submarine b 

• Decision Variables 

,BT
bwtpmX  equals 1 if a weapon of type w in the torpedo room of 

submarine b is used to allocate missile m of task-part p in task 
t, 0 otherwise 

 
 
 

 32



• Formulation 
Additional constraints: 

- Avoid near-simultaneous task allocation to torpedo tubes (similar to (1.5) for 

ships): 

12.1. 
10 ,

,
M
tp

BT T
Ibw t

i T
t

n
BT
bwtpm b

p mwn b Bt T
w W

X m
=> ∈∈

∈

≤∑ ∑ ∑ ∑ BT
        ,b i∀  

- Binary variables 

12.2. { }0,1 ,BT
bwtpmX ∈   , , , , , , 0, , ,1T BT M

t bw tpb w t p m b B w W n t T p P m n∀ ∈ ∈ > ∈ ∈ ≤ ≤  
 

Accordingly, the formulation for goals and other constraints must be extended in 

order to incorporate submarines.  The complete formulation is shown in the Appendix. 

13. Levels of Achievement for Goals 

When goal  is being optimized, it is possible to specify a target level for all 

higher priority goals, k k . 

1k >

′ 1,..., 1= −

• Data 

,kε  percentage of deviation (from the best possible) allowed for goal k 
when a less priority goal is considered in the objective function  

,kγ  direction of goal k: 1kγ =  if maximization, 1kγ = −  if 
minimization 

• Formulation 
Additional constraints: 

- Force levels of achievement for goals: 

13.1.    (1 ),k k kZ Z ε∗
′ ′≤ + , 1kk k k γ ′′ ′∀ < = −  

13.2. (1 ),k k kZ Z ε∗
′ ′≥ −    , 1kk k k γ ′′ ′∀ < =  

 
14. Combined Objective Function 

As an alternative to hierarchical optimization, we may optimize a combined 

(weighed) objective function of all goals. 
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• Data 

,kω  weight given to goal k when a combined-goal objective is 
considered, where 1 2 ... 8ω ω ω� � � . 

• Decision Variables 

,oZ   combined-goal objective  
• Formulation 

Additional constraints: 

- Combined goal: Minimize a weighed average of the goals k K∈ : 

14.1. 0 0 0min , where k k k
k

Z Z Z γ ω∗ = = ∑ z−  

15. Multi-Objective Formulation 
Appendix A contains one formulation (A.1)-(A.73) that is the union of all the 

previous formulations.  We consider two formulations for our multi-objective problem: 

• Hierarchical formulation (H): For each k K∈ , solve the following sequence of 
models: 

*( ) : min (or max)
s.t. (A.1) - (A.73)

k k kH Z Z=

 

Remark: To be more precise, we write all these models as the following 

minimization problems: 
*( ) : min

s.t. (A.1) - (A.73)
k k k k kH Z Zγ γ= − −

 

• Combined-goal (sometimes referred to as weighed-sum) formulation (C): 
*( ) : min

s.t. (A.1) - (A.45)
(A.48) - (A.73)

o oC Z Z=

 
 

C. PRELIMINARY VALIDATION OF THE MODEL 
In this section, we test our formulation with a small case from “NPS Report on 

TLAM Heuristic” [2003] in which the heuristic algorithm fails to obtain the optimal 

solution.  As we will see, our model provides the optimal solution by using both the 
 34



Hierarchical and Combined-goal formulations.  Figures 12 and 13 show the task 

specifications and firing units for the case, respectively. 

 

Target Task Conflict Set # of PR # of RS # of BU # of GH M3 List
T1 T1-1 1 2 1 1 0 III-C
T2 T2-1 1 1 0 0 0 II-C,III-C

T2-2 2 1 0 0 0 III-C
T2-3 2 1 0 0 0 II-C,III-C

TASKS SPECIFICATIONS

 
Figure 12.   Task Specifications for Validation Case.  

We have two targets and four tasks.  Tasks “T1-1” and “T2-1” are near-simultaneous and 
the same occurs with tasks “T2-2” and “T2-3.” The M3 list indicates the type of weapons 
that can be used for each task. 
 

H1 III-C III-C II-C II-C
H2 III-C III-C II-C II-C

H1 III-C III-C III-C III-C
H2 III-C III-C III-C III-C
H3 III-C III-C II-C II-C

FIRING UNITS (Ships)
FU1

FU2

 
Figure 13.   Firing Units for Validation Case.  

There are two ships: The first one has two half-modules with III-C and II-C TLAMs, 
while the second one has three half-modules.  
 

The solution provided by the heuristic algorithm (as reported in “NPS report on 

TLAM heuristic” [2003]) is displayed in Figure 14.  It leaves task “T1-1” unmet.  

 

Target Task Task-Part Firing Unit Half-Module Weapon
T1 T1-1 PR1

PR2
RS1
BU1

T2 T2-1 PR1 FU2 H3 III-C
T2-2 PR1 FU2 H3 III-C
T2-3 PR1 FU2 H1 III-C

UNMET
UNMET
UNMET
UNMET

NON-OPTIMAL ALLOCATION

 
Figure 14.   Non-Optimal Solution of Validation Case.  

The heuristic solution cannot allocate task “T1-1.” 
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Two solutions to this problem are displayed in Figure 15 and Figure 16, achieved 

by the Hierarchical formulation and the Combined-goal formulation, respectively. As we 

will see, the first one is optimal, whereas the second one is near-optimal.  

 

Target Task Task-Part Firing Unit Half-Module Weapon
T1 T1-1 PR1 FU2 H1 III-C

PR2 FU2 H3 III-C
RS1 FU2 H2 III-C
BU1 FU1 H2 III-C

T2 T2-1 PR1 FU1 H1 II-C
T2-2 PR1 FU2 H1 III-C
T2-3 PR1 FU2 H3 II-C

OPTIMAL SOLUTION

 
Figure 15.   Optimal Solution of Validation Case Obtained with the Hierarchical 

Formulation. 
 

Target Task Task-Part Firing Unit Half-Module Weapon
T1 T1-1 PR1 FU2 H1 III-C

PR2 FU2 H2 III-C
RS1 FU2 H3 III-C
BU1 FU1 H1 III-C

T2 T2-1 PR1 FU1 H2 II-C
T2-2 PR1 FU2 H2 III-C
T2-3 PR1 FU2 H3 II-C

OPTIMAL SOLUTION

 
Figure 16.   Near-Optimal Solution of Validation Case Obtained with the Combined-

Goal Formulation.  
We have used the following weights: w1= 107, w2= 106, …, w8= 1. 
 

Complete lists of goal achievements for both formulations are shown in Figure 

17. (Remark: The Hierarchical formulation yields a better solution than the Combined-

goal formulation for Goal #8 only) 
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Goal 

Priority Goal Name Direction Hierarchical-goal 
Formulation 

Combined-goal 
Formulation

1 Unmet Task-parts Min 0.0 0.0
2 Employment Penalty Min 0.0 0.0
3 Expend Firing Units Max 0.0 0.0
4 Level Firing Units Min 1.0 1.0
5 Primary Spread Max 0.0 0.0
6 Back-up Spread Max 0.0 0.0
7 M3 List Position Min 25.0 25.0
8 Residual Salvo Max 10.0 0.0

 

 

 

Figure 17.   Goal Achievements for Validation Case.   
Both Hierarchical and Combined-goal formulations find satisfying solutions, but the 
solution obtained by the Hierarchical formulation is superior to that of the Combined-
goal formulation for the “Salvo Capability” goal. 

Further validation of our formulations is extensively analyzed in Section III. 

D. SOLVING TLAM ALLOCATION MODEL USING FIX-AND-RELAX 
In this section, we describe our use of a general-purpose methodology, Fix-and-

Relax ( ) [Dillenberger et al., 1994], to tackle some of the large-scale cases that we 

present in Section III. (Similar techniques were used by Brown et al. [1987] under the 

name of “Cascading.”)  Branch-and-Bound (B&B) [Wolsey, 1998] can become 

inefficient to solve MIPs when the numbers of integer variables is large. In order to 

reduce the computational burden of solving our model with B&B, we apply , which 

involves solving a number of sub-problems, each one with smaller complexity than the 

original problem. In our model, we do not implement  for all of the binary 

variables, only those from which the other binary variables are derived (

F&R

F&R

F&R

{ }0,1 ,X s
shwtpm ∈  

{ }0,1∈BT
bwtpmX  and { }0,1BC

bwtpmX ∈ ).   

For example, using the combined goal formulation, problem (C) can be rewritten 

as follows:  
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{ }
{ }

(C) :min ( , , )

0,1

0,1s.t.
0

, ,

N

M

f x y u

x

y
u
x y u XYU

 ∈

 ∈

 ≥
 ∈

 

where x  is an N-dimensional vector comprised of  (see Appendix A):  

, for ,1 , , , 0, ,1s H T SX s S h m w W t T n p P mshwtpm s t shw tp∈ ≤ ≤ ∈ ∈ > ∈ ≤ ≤

, for , , 0, , ,1T BT M
t bw tp

BTX b B w W n t T p P m nbwtpm ∈ ∈ > ∈ ∈ ≤ ≤

Mn

n

, 

, and 

, for , , 0, , ,1T BC M
t bw tp

BCX b B w W n t T p P mbwtpm ∈ ∈ > ∈ ∈ ≤ ≤ , 

while y is the M-dimensional vector of the remaining binary variables, which appear in 

constraints (A.48)-(A.60) in the original model.  In this model,  is the vector of all 

continuous variables, which appear in constraints (A.61)-(A.73).  

u

( , , )f x y u  is our linear 

objective function. The constraints represented by , ,x y u XYU∈  are (A.1)-(A.45) and 

(A.48)-(A.73) for the (C) model or (A.1)-(A.73) for each of the ( ) models. kH

Let 1,..., nx x  be the components of x  where  is the total number of binary 

variables to which we implement , that is, 

N

F&R jx  in our abbreviated formulation is 

representing a variable of type s
shwtpmX  or  or . Let BT

bwtpmX BC
bwtpmX { }1,...,=V  be the set of 

indices for these variables, and  be a partition of the set V . That is, 

N

1,...,V nV

1

, ,
n

i i
i

V V V V
=

⊆ ∀ =∪1,..., ,i n= and ,i i′ ,i i 1,..., n .i iV V ′ ′∩ = ∅ ∀ = ≠  The cardinality of 

each V  is denoted i i iV N= , so 
1

n

i
i

N N
=

= ∑ .   
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Now, we rewrite our (C) model as: 

{ }
{ }

(C) : min ( , , )

0,1 , , 1,...,

0,1s.t.
0

, ,

j i

M

f x y u

x j V i n

y
u
x y u XYU

 ∈ ∀ ∈ =

 ∈


≥
 ∈

 

F&R approximates the solution to this problem by solving a sequence of n 

mixed-0-1 sub-problems (hereafter called stages), denoted as (C  , for r n .  

can be written as follows: 

r ) 1,...,= r(C )

{ }

{ }
[ ]

r

( , , )
0,1

0

(C ) : min ( , , )

ˆ , , 1,..., 1

s.t. 0,1 ,

0,1 , , 1,...,

M
x y u XYU

y
u

j j i

j r

j i

f x y u

x x j V i r

x j V

x j V i r n

∈
∈
≥

 = ∀ ∈ = −


∈ ∀ ∈
 ∈ ∀ ∈ = +

 

where the values ˆ jx  for  in stage  are those obtained from the 

solution of  problems ,…,  , respectively.  (C  can be solved efficiently, since  

only a reduced subset of  0-1 integer variables must be determined at each stage r . 

, 1,..., 1ij V i r∈ = −

) r-1(C )

1r >

r )1(C

We select our variable partition by grouping tasks. We create  groups of tasks, 

 such that ∪ .  V  is the set of variables indices associated with tasks in 

, that is, with variables 

n

1 ,..., ,nT T

iT

1

n

i
i

T T
=

=

s

i

shwtpX m  ,   ,   for BT
bwtpmX BC

bwtpmX it T∈ . 

We begin our implementation by relaxing the binary constraints for the 

 excluding the ones associated with tasks in T , which are forced to be 

binary. After the initial solution obtained from , these binary variables are fixed in 

variablesx − 1

1(C )
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2(C )

r(C ) :

(

s.t.



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
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

















1(C )

.  Then, we force a new set of variables (associated with tasks in T ) to be integer, 

and repeat the process until we solve the last stage model .  

2

,M
tpn≤

,

,1

M
tp t

T

T

,1

,

,

T

T

T

C)

n(C )

,

,1

w Wt

p>

,1

1

1

P

w W shw

m

m

∈

∈

∈

1

1

w W shw

m∈

∈

Model (C  for  can be stated as:  r ) 1,...,r = n

i r<

i r

 

min ( , , )

A.1) to (A.45) and  (A.48) to (A.73)

ˆ , for ,1 , 0, ,1 , ,

ˆ , for , , 0, ,

ˆ ,

i

T BT
t bw i

f x y u

s s H T S MX X s S h m n p P m n t Tshwtpm shwtpm s shw tp
BT BTX X b B w W n P m t T i rbwtpm bwtpm
BC BCX Xbwtpm bwtpm

= ∈ ≤ ≤ ∈ > ∈ ≤ ≤ ∈

= ∈ ∈ ∈ ≤ ∈ <

=

{ }

{ }

{ }

for , , 0, ,

0,1 , for ,1 , , 0, ,

0,1 , for , , 0, , ,

0,1 , for , , 0, , ,

T BC
t bw i

r

T BT M
t bw tp

T BC M
t bw tp

b B w W n p m n T i r

s H S MX s S h m n p P m n t Tshwtpm s t tp
BTX b B w W n p P n tbwtpm
BCX b B w W n p P n tbwtpm
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i
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t bw tp i

T BC M
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Let  represent the optimal objective function value for model .  Since  

 is a relaxation of , the optimal objective function value of this model,  

is a lower bound on . Similarly, since  is a restriction of ( , its objective 

function value,  is an upper bound on , and provides us with a feasible 

solution to problem .  

(C)Z ∗

Z ∗

(C)

(C)

(C) ∗

) 

)

1(C ) Z ∗

Z
n

C

(C )n

(Z ∗(C

(

C)

Basic F&R Algorithm for Model (C) 

Input: Partition V  , where each V  contains exactly all the 1,..., nV i x -variables 

associated with period tasks in set T : i
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iV

X

= { (  for ,  for and 

, for t }, 

, , , , , )s h w t p m

iT∈

sXshwtpm

,...,i n

( , , , , )b w t p m BTXbwtpm

BC
bwtpm 1∀ =  

Step 1: Set  and solve (C  1i = i )

If  is infeasible, STOP: “Problem (  is infeasible.”  Otherwise, set i(C ) C)
1 (C )Z∗ ∗(C)=Z . 

Step 2: If i , set n= i(C)= Z (C )Z ∗ ∗  and STOP: “Problem  is feasible.”   (C)

Otherwise, increase  by 1. i

Step 3: Solve  (see remark below). If  (C  is feasible, STOP: “Problem  

status is unknown.”   

i(C ) i ) (C)

Otherwise, go back to Step 2. 

Output:  status “Infeasible,” “Feasible” or “Unknown.”  If status is 

“Feasible,” 

i(C )

(C)Z ∗  and (C)Z ∗  are a lower and an upper bound, 

respectively, on the optimal solution to (C . )

Remark: If all variables in V  are integer after solving , then this solution is 
already optimal to (C  

i
i-1(C )

i )

This basic  algorithm could fail to provide an answer to our problem if  

is feasible but, at some subsequent stage i , the related problem  becomes 

infeasible. The reason of that situation is that we cannot determine whether the source of 

infeasibility is that the (  is actually integer-infeasible (but continuous-feasible), or that 

the cascade fixing procedure, which works with estimates of the true optimal values of 

the variables, makes  infeasible unnecessarily.  We can make provisions to avoid this 

situation by creating bigger groups of tasks (see Escudero and Salmeron [2002]).  As we 

will show in Chapter III, in the test cases that require us to implement , this situation 

did not occur. 

F&R

i(C

1(C )

1> i(C )

C)

)

F&R

A similar  algorithm for our (H) formulation has been implemented.  In this 

case, the partition V  must be specified for each goal 

F&R

i k K∈ . 
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III. IMPLEMENTATION AND COMPUTATIONAL RESULTS 

In this chapter, we describe some details of our implementation and present 

results for our (H) and (C) models on a set of test cases drawn from Kirk [1999] and 

Arnold [2000]. 

A. OVERVIEW 
We implement our models in GAMS [Brooke et al. (1996)] (version 2.0.8.3 with 

Revision 138 module) using the CPLEX solver [GAMS-CPLEX (2004)] (version 9.0.0) 

on a Dell Computer Precision 340 Pentium-4, at 2.8 GHz with 1 GB of random access 

memory.  

The source code is currently divided into 11 modules comprising over 1,000 lines 

of code.  All the data is handled separately in multiple data files.  For specific details on 

the use of the code, see TLAM Formulation and Code [2004] or upcoming updates of that 

document.  Next, we explain some of the details specified through our data files, and 

show examples of how to use them. 

1. Strategy File 
The “Strategy” Data File (Figure 18) allows the user to specify a maximum 

solution time, the number of  stages for the (C) formulation, and whether default 

weights for the (C) formulation must be overwritten by customized weights (specified 

separately) or not. 

F&R

The default weight for the goal in the k-th position on the goal priority list is 108-k.  

Since there are eight goals, the highest priority goal on the list will receive a weight of 

107, whereas the weight for the lowest priority goal is 1.  These defaults can be 

overwritten by the user. 
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* Parameters for the strategy for CASE 
 
* # of F&R stages when a weighed objective function is used 
Num_FR_stages 1 
 
* Overwrite default weights  
Overwrite_weights 0 
 
* Maximum time (seconds) 
Maxtime 600 

 
Figure 18.   Strategy Data File.   

This file contains user’s strategy information to solve the problem.  There are three fields.  
The first two (Num_FR_stages and Overwrite_weights) apply only to the case 
where a weighed objective function is used.  The last field (Maxtime) applies to both 
hierarchical and combined-goal formulations. 
 

It is important to remark that the use of adequate goals is fundamental to achieve 

the desired results.  Determining weights is a critical task, since these weights must 

ensure that no allocation can ever produce a lower priority goal to outweigh a higher 

priority goal.  Our program allows the user to manipulate the weights in order to avoid 

that problem.  But, the validity of the solutions depends on the extent to which the 

operator can determine appropriate weights for each problem.  This involves considering 

possible ranges of variation for all goals and potential sources of numerical instability.  

These are two examples of why the selection of weights needs to be carried out carefully:  

• Suppose the first goal units are “number of unmet task-parts” and the second goal 
units are “penalty units for firing unit engagement in the allocation.”  Furthermore, 
assume that there is only one ship available and one task-part to be allocated.  If the 
employment penalty of the ship is 100, the default weights (w1=107, w2=106) will not 
cause the desired effect: one unmet task-part has a cost of 107x1=107, whereas 
engaging the ship in the allocation has a cost of 106x100=108.  Consequently, we 
would conclude that it is preferable not to allocate the task-part, contradicting our 
initial objective of giving more priority to the allocation of all tasks.  To avoid this 
problem, it is recommended to normalize the objective function coefficients, when 
possible, for example, we could have used an employment penalty equal to one, 
instead of 100.  In other cases, it may be necessary to customize all of the weight 
values.  

 44

• Another factor to consider is the optimality tolerance used to solve the models.  The 
default value is 0.01 (1%) (this can also be overwritten in by the user).  This provokes 
an early termination of the solving process (Branch-and-Bound) when the incumbent 
solution is proven to be within the specified tolerance from optimality.  Thus, 
objectives with lower weights may be overlooked because changes in them cannot 



provoke changes in the objective function that offset the tolerance level.  An example 
of this is our primary validation example in Section II-D (see Figure 17).  There, the 
lowest priority goal optimal value is 10.0 (found by the (H) formulation).  However, 
when this goal is combined with the others, the value achieved is 0.0.  In practice, this 
may happen even if the optimality tolerance is set to 0%, because of rounding errors 
in the solver. 

The Maxtime field is the allowed time to solve the model without including the 

generation and data management time, which may not be negligible in some cases.  

Unfortunately, GAMS suffers from enormous overhead for model generation, because, 

for example, it is not able to use previously generated models for the same problem, with 

perhaps minor changes (such as changing an objective function coefficient, or adding an 

additional constraint).  Thus, each model in the sequential process to solve the 

hierarchical formulation needs to be regenerated, and the same occurs with each model 

for the  variable-partition procedure.  While we realize that, at this moment, 

overhead time (as part of the total time) is of interest, we also understand that much of 

this time could be avoided if, for example, we used the native interfaces for the different 

solvers (e.g., CPLEX callable library, OSL EKK-callable library, etc.), instead of using 

GAMS to create the models. 

F&R

Once the Maxtime is established, the following time allocation is made for the 

different models: 

• Combined objective function with one  stage: F&R

In this case, all of Maxtime seconds are allocated to solve the model. 

• Hierarchical objective function with one  stage per goal:   F&R

We allocate 1 0.5+
#    1

remaining time
of remaining goals

 
×  + 

 seconds to the 

incumbent goal.  For example, if Maxtime is 600 seconds and there are eight goals, then 

367 seconds is the allotted time to solve the first goal.  If it can be solved before that time 

limit, for example, after 200 seconds, then there are 400 seconds left for the remaining 

seven goals.  Thus, the second goal receives 250 seconds, and so forth. 
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• Combined objective function with n   stages:   1> F&R

We allocate 1 0.5+
#    1

remaining time
of remaining stages

 
×  + 

 seconds to the 

incumbent stage.  The idea is the same as the one explained in the above bullet. 

• Hierarchical objective function with nk  stages for goal k, where  for 
some . 

F&R 1kn >
k K∈

We allocate 1 0.5+
#    1kt remaining time

of remaining goals
 

= ×  + 
 seconds to 

the incumbent goal, k.   

Then, we allocate 1 0.5+
#    1k

k

remaining time
of remaining stages

 
×  + 

 kremaining time

 seconds 

to the incumbent stage within the goal, where is initialized to t  (total 

allotted time for the goal), and stages are for goal k. 

k

2. Goal Parameters File 
Another important file specifies goal data (see Figure 19): 

 
* Goal Parameters 
 
                Goal_Priority   Max_Deviation   Num_FR_stages   Goal_weight 
UNMET_TP        1               .20             1               1E7 
EMP_PEN         2               .20             1               1E5 
EXPEND_FU       3               .20             1               1E4 
LEVEL_FU        4               .20             1               1E3 
PR_SPREAD       5               .20             1               1E2 
BU_SPREAD       6               .20             1               1E1 
MCUBE_POS       7               .20             1               1E0 
SALVO_CAP       8               .20             1               1E-1 

 
Figure 19.   Goal Parameters Data File.   

This file provides flexibility in the way the model is set up.  There are four columns of 
data for each goal.  The first field (Goal_Priority) applies to both the (C) and (H) 
formulations.  The second and third fields (Max_Deviation and Num_FR_stages, 
respectively) apply to the hierarchical formulation.  The last field (Goal_weight) 
applies to the combined-goal formulation. 
 

The Goal_Priority field must contain a list of all integers from one through 

eight, where each number must be entered exactly once.  The number indicates the 

priority of the goal and will be used for the following purposes:   
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• If the combined-goal is being used, a default weight equal to 108-k will be allocated 
for the goal whose priority is precisely k.  These weights will be used in the combined 
objective function unless otherwise specified by the user by means of the 
Overwrite_weights flag (specified in the aforementioned Strategy Data File). 

• If a hierarchical formulation is being used, the list causes the highest priority goal 
(i.e., the goal whose priority is equal to one) to be optimized first, then the second 
(subject to a restriction on the first), and so forth. 

The Max_Deviation field for a goal whose priority is k<8 specifies the level of 

flexibility in the achievement required for this goal in the (H) formulation.  It sets the 

maximum deviation from the goal’s optimum when any lower priority goal k’ > k is 

being optimized.  For example, using the data in Figure 19, if the optimal solution for 

goal #1 is 100, then goal #2 will be optimized subject to a maximum of 120 for goal #1.  

Remark: The deviation must be specified in absolute value because the direction for each 

goal (min. or max.) is already implemented in the code.  Thus, if goal #1 were a 

maximization goal, then goal #2 would have been optimized subject to a minimum of 80 

for goal #1. 

The Num_FR_stages field contains the number of  stages for each goal.  If 

this number is set to one, the optimization problem associated with that goal will be 

solved in one single pass.  It is anticipated that some goals (such as “Spread Primary 

Task-Parts”) may require more computational work than others, and it is therefore 

advised to specify more than one  stage for these goals in large cases. 

F&R

F&R

The Goal_Weight field is only used when the user solves the combined-goal 

formulation with customized weights.  The Overwrite_weights flag (in the 

Strategy.dat file) must be set to “1.”  Then, the Goal_Weight field can be used to 

specify new weights for each goal, which will overwrite the default ones.  

3. Output Files  
The information of goal achievement and time used depends on the formulation 

used.   
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Total solve time:      0.3 sec. 
G 1: UNMET_TP  (min)      0.0 
G 2: EMP_PEN   (min)      1.0 
G 3: EXPEND_FU (max)      0.0 
G 4: LEVEL_FU  (min)     16.0 
G 5: PR_SPREAD (max)      1.0 
G 6: BU_SPREAD (max)      1.0 
G 7: MCUBE_POS (min)     25.0 
G 8: SALVO_CAP (max)     36.0 
OBJ_VAL_W  :    1159114.00 
OBJ_EST_W  :    1158614.00 

 
Figure 20.   Goal Achievement Results: Combined-Goal Formulation 

 

In the combined-goal results, the output (see Figure 20) shows: 

• The total solve time 

• The objective achieved for each goal 

• The combined-goal achievement and a lower bound on the best possible result. 
Remark: the combined-goal formulation is stated as a minimization model, see 
Section II.B. 

 
Total solve time:      1.9 sec. 
                                *********************** 
                                 MULTI-OBJECTIVE TABLE 
                                *********************** 
                 G 1     G 2     G 3     G 4     G 5     G 6     G 7     G 8     Time   (OBJ_VAL_H)(OBJ_EST_H) 
                (min)   (min)   (max)   (min)   (max)   (max)   (min)   (max)   (sec) 
G 1: UNMET_TP     0.0     1.0     0.0    20.0     0.0     0.0    29.0     0.0     0.2         0.00        0.00 
G 2: EMP_PEN      0.0     1.0     0.0    20.0     0.0     0.0    29.0     0.0     0.2         1.00        1.00 
G 3: EXPEND_FU    0.0     1.0     0.0    20.0     0.0     0.0    29.0     0.0     0.3         0.00        0.00 
G 4: LEVEL_FU     0.0     1.0     0.0    16.0     0.0     0.0    29.0     0.0     0.3        16.00       16.00 
G 5: PR_SPREAD    0.0     1.0     0.0    18.0     2.0     0.0    29.0     0.0     0.2         2.00        2.00 
G 6: BU_SPREAD    0.0     1.0     0.0    18.0     2.0     0.0    29.0     0.0     0.3         0.00        0.00 
G 7: MCUBE_POS    0.0     1.0     0.0    18.0     2.0     0.0    25.0     0.0     0.2        25.00       25.00 
G 8: SALVO_CAP    0.0     1.0     0.0    18.0     2.0     0.0    25.0    36.0     0.2        36.00       36.00 
 

Figure 21.   Goal Achievement Results: Hierarchical Formulation. 
 

When the (H) formulation is used, the output (see Figure 21) displays: 

• The total solve time 

• The objective achieved for each goal at each level of the hierarchical-optimization 
process 

• The time needed to solve each goal 

• A bound for the best possible value for each goal 

For example, when we solve for the first goal (minimization), we obtain zero for 

that goal and other non-optimal values for the other goals (see the line headed “G 1”).  

This is clearer, for example, by looking at goals #3 and number #4.  When goal #3 is 
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optimized, the result value achieved for goal #3 is zero whereas it is 20 for goal #4.  

Then, when we optimize goal #4, we are able to reduce this value to 16.  Moreover, we 

know this value is optimal because the bound (last column value) indicates that the best 

estimate is precisely 16.  However, when we optimize goal #5, which improves its value 

from zero to two, we notice that goal #4 worsens from 16 to 18.  This is due to the fact 

that we have allowed a maximum of 20% deviation (see Figure 19) from its optimal for 

this goal.  

Of course, the last row refers to the last goal that is optimized and indicates the 

values achieved for all of the goals after the optimization process is completed.  As we 

can see, these values slightly differ from those achieved with the weighed objective 

function, due to the degree of flexibility allowed in some goals.  If an optimal solution is 

required, then the Max_Deviation parameter must be set to 0.00 for all goals, and the 

optimality tolerance must be set to 0.00 as well. 

Figure 24 is an example of allocation output.  The example shows, for example, 

two PR task-parts in task “T1-1” in target “T1” allocated to two III-C weapons in half-

modules #1 and #2 on ship DDG72.  Also, we can see that submarine SSN775 is engaged 

in the allocation; in particular, two II-C weapons and one III-C weapon from the torpedo 

room are used. 

  
                           ******************** 
                                 TASKING ALLOCATION 
                                ******************** 
 
  G            T                P    M         S         H         B         T/C       W 
  _______________________________________________________________________________________ 
 
 
  T1           T1-1             PR   TPM1      DDG72     h2                            III-C 
                                     TPM2      DDG72     h1                            III-C 
                                RS   TPM1      DDG72     h3                            III-C 
                                BU   TPM1      CG73      h2                            III-C 
 
 
 
 
  T2           T2-1             PR   TPM1                          SSN755    T         II-C 
               T2-2             PR   TPM1                          SSN755    T         III-C 
               T2-3             PR   TPM1                          SSN755    T         II-C 

 
Figure 22.   Allocation Results 
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4. Example 

The flexibility that our code allows is shown in the following example.  We 

consider “Case 1” drawn from Kirk’s Thesis [1999].  Initially, we consider minimizing 

unmet task-parts as the highest priority goal, and maximizing residual salvo as the least 

priority goal.  However, the TSC may require a change in the priorities, and he or she 

may deem maximizing residual salvo as the second priority goal (e.g., Kuykendall 

[1999]), to the detriment of other intermediate goals.  We conduct this test by simply 

changing the priority list in the goal data file, as explained above.  As we show in Figure 

23, the achievements in some of the goals change in these two different cases.    

 
Goal Name Direction

Initial 
Goal 

Priority
Value New Goal 

Priority Value

Unmet Task-parts Min 1 0.0 1 0.0
Employment Penalty Min 2 0.0 8 1.0
Expend Firing Units Max 3 N/A 3 N/A
Level Firing Units Min 4 34.0 4 34.0
Primary Spread Max 5 3.0 5 4.0
Back-up Spread Max 6 N/A 6 N/A
M3 List Position Min 7 92.0 7 92.0
Residual Salvo Max 8 159.0 2 160.0

 

Figure 23.   Case 1: Changing Goal Priorities. 
 

An important advantage of the (H) implementation is that even if we cannot prove 

that an incumbent solution is optimal, a bound on the best possible solution is provided.  

This may allow the TSC to let more solving time to optimize particular goal in a 

subsequent run.  An example of this is “Case 5A” from Kirk [1999].  As we can see from 

Figure 24, we achieve 38.5 for Goal #4 before the solving time limit (set to 400 seconds 

for this test) is exceeded.  At this point, we cannot guarantee that 38.5 is the optimal 

value for leveling missiles across firing units, but we know that in any case we cannot 

obtain a better score than 37.4.  
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Goal 

Priority Goal Name Direction (H) 
Formulation Best Bound

1 Unmet Task-parts Min 0.0 0.0
2 Employment Penalty Min 0.0 0.0
3 Expend Firing Units Max 72.0 73.5
4 Level Firing Units Min 38.5 37.4
5 Primary Spread Max 4.0 4.0
6 Back-up Spread Max 0.0 0.0
7 M3 List Position Min 594.0 586.7
8 Residual Salvo Max 222.0 242.8

 

 

 

 

 

 

 

Figure 24.   Case 5A: Comparison of Solution Values and Best Bounds.  
We limit the solving time to 400 seconds for this run.  Shaded cells shows goals for 
which the solution achieved has not been proven optimal. 
 

In the case of the (C) implementation, we do not have a measure of optimality for 

each individual goal, but for the whole combined goal that makes up the objective 

function. 

B. SCENARIO DESCRIPTION AND COMPUTATIONAL RESULTS 

1. Scenario Description 

Our test focuses on existing scenarios developed by previous NPS students and 

the NSWCDD.  We also incorporate two new scenarios to our test cases.  In total, we 

tested 23 cases, including sub-scenarios. 

The first six scenarios were developed by NSWCDD and tested initially by Kirk, 

and then by Hodge and Arnold.  Some of these test scenarios include several excursions, 

making a total of 11 test cases.  The number of tasks in these cases ranges from 13 tasks 

in “Case 1” to 104 tasks in “Case 6.”  All of Kirk’s 11 cases only include ships as firing 

units, and do not have multiple missile requirements for the same task-part, among other 

limitations.  For additional details, consult Kirk [1999].  

Arnold adds six new scenarios to test new features such as submarines, ghost 

tasks, targets containing multiple tasks, etc. For details, see Arnold [2000].  

In addition to these twelve scenarios (and their variants), we create two more 

scenarios: the first, “Case 13,” is strongly based on Wingeart’s most complicated case 

(Strike Three of RIMPAC 00-3 Exercise), which has been recreated manually by using 
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the information available from his thesis (as opposed to Kirk’s and Arnold’s scenarios for 

which electronic data were available).  The new second scenario, “Case 14” is a 

hypothetical case intended to implement multiple specifications (described in Chapter II) 

in a single case, for example, submarine back-up tasking, non-separable tasking, TSC 

specifications, etc.  “Case 13” includes 100 tasks and “Case 14” has 26 tasks.   

2. Test Case Set Up 

We test all scenarios using both the (C) and (H) formulations.  Unless otherwise 

specified, we use the following set of parameters to run all test cases: 

• (H) formulation (multiple submodels, one for each goal, optimized hierarchically): 

• Optimality tolerance: 0.01 (1%) for each submodel. 

• “Maxtime” parameter: (maximum solve time for the overall 
process including all submodels): 3,600 seconds 

• “Num_FR” parameter (number of  stages per submodel): 
One (i.e., solve the submodel as a whole without variable partition) 
for all goals. 

F&R

• “Max_Deviation” parameter (percentage of deviation from optimal 
goal value): 0.01 (1%) for all the goals.   

• (C) formulation (one combined objective function with weighed goals): 

• Optimality tolerance: 0.01 (1%). 

• “Maxtime” parameter: 3,600 seconds. 

• “Num_FR” parameter (number of  stages): One (i.e., solve 
the model as a whole without variable partition). 

F&R

• Weights used:    810 , {1,...,8}k
k k Kω −= ∀ ∈ =

In some special cases, we will use  with more than one stage in order to 

increase the model or submodel solvability.  For example, we may be applying F&R  to 

the submodel associated with a special goal in the (H) formulation or to the model in the 

(C) formulation. 

F&R

In other cases, we may be reducing the maximum time allotted for the overall 

process in order to check how this affects the quality of the incumbent solution as well as 

the best bound on the optimal solution if this is not achieved. 
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3. Results 

We compare our results to those obtained by Kirk [1999] and Arnold [2000] (the 

former for applicable cases only).  We omit Hodge [1999] from the comparasion because 

his results are always outperformed by Kirk and Arnold.  

Table 1 shows the results for all scenarios.  The shaded cells show the key 

differences between our solutions and the existing ones.  As explained earlier in this 

thesis, we display solution time as that required to solve the model, omitting overhead 

time caused by model generation and other data management in GAMS.   

For the first six scenarios and their variants, we notice the reduction in 

computational time to solve our (H) and (C) formulations when compared to that reported 

by Kirk [1999], who produced the last available MIP formulation prior to this work.  One 

of the most dramatic cases is “Case 5,” in which solution time decreases from 10,976 

seconds for Kirk’s Hierarchical solution to 40.5 seconds for our (H) formulation.   

Regarding the quality of the solutions provided by our formulations, it is the same 

as or better than that of Kirk and Hodge (where available), and Arnold (in all cases, 

except “Case 2” where we believe there is an error in the result produced by Arnold, 

which is also confirmed by Kirk’s result).  (Remark: In some cases, such as “Case 1B” 

using the (H) formulation, we notice that the optimal value reported for Goal #8 is 159, 

whereas the optimal is 160.  This and other minor discrepancies can be attributed to the 

optimality tolerance established at 1% for all models.  In these cases, we still consider 

both solutions of the same quality.) 

“Case 13” is similar to that of LT Wingeart’s most complicated case: RIMPAC 

00-3 Strike Three case, with 100 tasks [Wingeart, 2001].  Because the full data set for 

this case was not available at the time of developing this work, we manually recreated the 

case using the information shown in Wingerat’s thesis.  Consequently, our results can be 

considered comparable to those of Wingeart in terms of scope and case difficulty, but not 

necessarily on a goal by goal basis.  

Finally, we tested a completely new scenario, “Case 14,” to further validate the 

incorporation of all problem specifications into our formulation. 
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GOALS  
 
 

Test 
Case 

 
 
 

Implementation 
Source 

# 1      
(Min): 

Unassigned 
Task-parts 

# 2 
(Min):  
Penalty 
Units* 

# 3 
(Max): 
Expend 
Units 

# 4  
(Min): 

Deviation   
Level  

# 5 
(Max): 
Primary 
Missiles 

# 6 
(Max): 

Back-up 
Missiles 

# 7 
(Min): 
M3 List 
Position 

# 8 
(Max): 

Residual 
Salvo  

 
 
 

Solution 
Time 

(Seconds) 
 

1 Kirk (Hier. R.) 0 0 N/A 34 3 N/A 92 160 26 

 Arnold (Heur.) 0 0 N/A 34 3 N/A 92 160 2 
 (C) Model 0 0 N/A 34 3 N/A 92 160 0.3 
 (H) Model 0 0 N/A 34 3 N/A 92 159 1.8 

1A Kirk (Hier. R.) 0 N/A 10 8.7 N/A N/A 92 160 34 

 Arnold (Heur.) 0 N/A 10 8.7 N/A N/A 92 160 2 
 (C) Model 0 N/A 10 8.7 N/A N/A 92 160 4.3 

 (H) Model 0 N/A 10 8.7 N/A N/A 92 160 1.8 

1B Kirk (Hier. R.) 0 N/A 10 8.7 N/A 2 92 160 36 

 Arnold (Heur.) 0 N/A 10 8.7 N/A 3 92 160 2 

 (C) Model 0 N/A 10 8.7 N/A 4 92 160 0.3 
 (H) Model 0 N/A 10 8.7 N/A 4 92 159 2.1 

2 Kirk (Hier. R.) 0 0 N/A 23 3 N/A 184 157 335 

 Arnold (Heur.) 0 0 N/A  13.5** 2 N/A 221 162 3 

 (C) Model 0 0 N/A 23 3 N/A 184 157 0.8 

 (H) Model 0 0 N/A 23 3 N/A 184 157 5.6 

2A Kirk (Hier. R.) 0 1 N/A 42.5 2 N/A 196 146 103 

 Arnold (Heur.) 0 1 N/A 44.5 4 N/A 196 141 4 
 (C) Model 0 1 N/A 42.5 4 N/A 186 146 0.4 
 (H) Model 0 1 N/A 42.5 4 N/A 186 145 1.9 

3 Kirk (Hier. R.) 0 0 N/A 15.5 3 N/A 368 129 1625 

 Arnold (Heur.) 0 1 N/A 1.5 3 N/A 368 130 5 
 (C) Model 0 0 N/A 15.5 3 N/A 368 140 1.5 

 (H) Model 0 0 N/A 15.5 3 N/A 368 140 14.5 

4 Kirk (Hier. R.) 0 1 N/A 0 4 N/A 496 127 6133 

 Arnold (Heur.) 0 1 N/A 16 4 N/A 508 107 10 

 (C) Model 0 1 N/A 0 4 N/A 484 127 31.7 
 (H) Model 0 1 N/A 0 4 N/A 488 126 23.1 

5 Kirk (Hier. R.) 0 0 N/A 11.4 4 N/A 558 268 10976 

 Arnold (Heur.) 0 0 N/A 25.4 6 N/A 599 252 10 

 (C) Model 0 0 N/A 11.4 4 N/A 558 268 6.1 
 (H) Model 0 0 N/A 11.4 4 N/A 562 268 40.4 

5A Kirk (Hier. R.) 0 0 65 34 5 N/A 594 242 2356 

 Arnold (Heur.) 0 0 73 40 4 N/A 596 227 10 
 (C) Model 0 0 73 40 4 N/A 597 230 4.5 

 (H) Model 0 0 72 38.5 4 N/A 597 241 3367.9 

5B Kirk (Hier. R.) 0 1 N/A 21.4 4 N/A 564 268 34340 

 Arnold (Heur.) 0 1 N/A 35.1 5 N/A 629 240 16 
 (C) Model 0 1 N/A 21.4 5 N/A 583 268 1349 
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GOALS  
 
 

Test 
Case 

 
 
 

Implementation 
Source 

# 1      
(Min): 

Unassigned 
Task-parts 

# 2 
(Min):  
Penalty 
Units* 

# 3 
(Max): 
Expend 
Units 

# 4  
(Min): 

Deviation   
Level  

# 5 
(Max): 
Primary 
Missiles 

# 6 
(Max): 

Back-up 
Missiles 

# 7 
(Min): 
M3 List 
Position 

# 8 
(Max): 

Residual 
Salvo  

 
 
 

Solution 
Time 

(Seconds) 
 

 (H) Model 0 1 N/A 20.6 5 N/A 592 270 2328 

6 Kirk (Hier. R.) 0 0 69 24 6 N/A 904 209 261 

 Arnold (Heur.) 0 0 69 24 6 N/A 902 201 7 

 (C) Model 0 0 78 13.5 5 N/A 892 240 22.2 
 (H) Model 0 0 78 13.5 5 N/A 896 238 226.8 

7 Arnold (Heur.) 0 0 N/A 34 2 N/A 92 160 2 

 (C) Model 0 0 N/A 34 3 N/A 92 152 0.3 
 (H) Model 0 0 N/A 34 3 N/A 92 152 1.4 

7A Arnold (Heur.) 0 0 10 34.7 N/A N/A 104 152 5 

 (C) Model 0 0 10 34.7 N/A N/A 107 147 1.7 
 (H) Model 0 0 10 34.7 N/A N/A 107 147 1.4 

7B Arnold (Heur.) 0 0 10 8.7 N/A 3 92 160 2 

 (C) Model 0 0 10 8.7 N/A 4 92 150 6 
 (H) Model 0 0 10 8.7 N/A 4 92 150 1.9 

8 Arnold (Heur.) 0 0 N/A 36 N/A N/A 80 162 2 

 (C) Model 0 0 N/A 36 N/A N/A 80 162 0.3 

 (H) Model 0 0 N/A 36 N/A N/A 80 161 2 

8A Arnold (Heur.) 0 0 N/A 36 N/A N/A 81 162 2 

 (C) Model 0 0 N/A 36 N/A N/A 80 153 0.2 

 (H) Model 0 0 N/A 36 N/A N/A 80 153 1.4 

9 Arnold (Heur.) 0 0 N/A 34 3 N/A 92 160 3 

 (C) Model 0 0 N/A 34 3 N/A 92 160 0.3 

 (H) Model 0 0 N/A 34 3 N/A 92 160 1.8 

9A Arnold (Heur.) 0 0 N/A 34 N/A 3 92 160 3 

 (C) Model 0 0 N/A 34 N/A 3 92 153 0.3 

 (H) Model 0 0 N/A 34 N/A 3 92 153 1.6 

10 Arnold (Heur.) 0 0 N/A 39 3 N/A 157 147 3 

 (C) Model 0 0 N/A 31 3 N/A 149 152 0.6 

 (H) Model 0 0 N/A 31 3 N/A 149 152 2.9 

10A Arnold (Heur.) 0 0 N/A 37 3 N/A 167 147 3 

 (C) Model 0 0 N/A 31 3 N/A 149 152 0.6 

 (H) Model 0 0 N/A 31 3 N/A 149 152 2.6 

11 Arnold (Heur.)          7*** 0 N/A 0 1 N/A 58 162 1 

 (C) Model 0 0 N/A 34 3 N/A 92 160 0.3 

 (H) Model 0 0 N/A 34 3 N/A 92 159 1.7 

12 Arnold (Heur.) 0 0 N/A 43 7 N/A 654 256 12 

 (C) Model 0 0 N/A 15.8 6 N/A 635 272 12 

 (H) Model 0 0 N/A 15.8 6 N/A 641 272 46.4 

13 Wing.(Heur(B)) 0 N/A N/A 49 8 6 128 168 N/A 

 Wing.(Heur(W)) 4 N/A N/A 73.5 8 3 111 177 N/A 
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GOALS  
 
 

Test 
Case 

 
 
 

Implementation 
Source 

# 1      
(Min): 

Unassigned 
Task-parts 

# 2 
(Min):  
Penalty 
Units* 

# 3 
(Max): 
Expend 
Units 

# 4  
(Min): 

Deviation   
Level  

# 5 
(Max): 
Primary 
Missiles 

# 6 
(Max): 

Back-up 
Missiles 

# 7 
(Min): 
M3 List 
Position 

# 8 
(Max): 

Residual 
Salvo  

 
 
 

Solution 
Time 

(Seconds) 
 

 Wing.(Split(B)) 0 N/A N/A 49 8 5 128 169 N/A 

 Wing.(Split(W)) 6 N/A N/A 73.5 8 3 112 176 N/A 
 (C) Model 0 N/A N/A 45 6 7 448 371 7.3 

 (H) Model 0 N/A N/A 45 6 7 451 371 199 

14 (C) Model 0 0 24 7.3 2 2 227 178 0.5 

 (H) Model 0 0 24 7.3 2 2 227 177 2.9 

 
Table 1. Result List.  

Maximum time allowed is 3,600 seconds and optimality tolerance is 0.01 for all runs. 
 
*: To be consistent with reports by previous students, actual employment penalties are 
divided by 100.  
**:  Arnold solution for this case appears to be incorrect. 
***:  Available data for this case appears to be inconsistent with Arnold’s report. 
 

4. Refinements to Tackle the Hardest Test Cases 

While MIP solution quality is expected to exceed heuristics, there are a few 

instances in which solving the MIP may require a prohibitive computational time.  It is 

not possible to know which cases will require an unacceptable time to be optimally 

solved, but we have made provisions to speed up the MIP solver.   

First, we establish priority branching as follows: Half-module-related variables 

are branched first.  Then, torpedo-tube-related variables are branched, and lastly, 

canister-capsule-variables.  Within each of these categories, the more weapons of a given 

type the asset has, the higher the branching priority.  For example, given S
shwn  as the 

number of weapons of type w in half-module h on ship s, the priority value given to 
S
shwtpmX  is 1/(1 )S

shwn+ . Remark: The lower the priority value, the sooner the associated 

variable is branched.  By using these priorities, we notice that a slight improvement in 

computational time for some cases. (typically under 10%). 
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In this section we report the results obtained by (a) reducing the total solving time 

and (b) using  with several stages in order to partition our models into easier 

subproblems. 

F&R

a. Reducing the Solving Time 

We observe that “Case 5B” is one of the most difficult cases to solve. In 

fact, when we let the maximum solving time increase, this case uses up all the time 

available.  When we decrease the maximum solving time to 600 seconds, the (H) 

formulation gives the same near-optimal solution as before (see Figure 25).  We notice 

that in both cases, the best available bound for goal #4 is 11.4, while the best solution 

found is 20.6. It is clear that this particular problem is consuming all the available time 

allocated for that goal, which is dynamically computed as explained in Section A. 

Priority  Name Direction (H) 
Formulation 

Best 
Bound

(H) 
Formulation 

Best 
Bound

1 Unmet Task-parts Min 0.0 0.0 0.0 0.0
2 Employment Penalty Min 1.0 1.0 1.0 1.0
3 Expend Firing Units Max N/A N/A N/A N/A
4 Level Firing Units Min 20.6 11.4 20.6 11.4
5 Primary Spread Max 5.0 5.0 5.0 5.0
6 Back-up Spread Max N/A N/A N/A N/A
7 M3 List Position Min 592.0 582.4 592.0 582.4
8 Residual Salvo Max 270.0 271.0 270.0 271.0

Maximum Time      
(36000 seconds) 

Maximum Time      
(600 seconds) Goal

Solution Time (Seconds) 21767.0 584.4

 

Figure 25.   Case 5B: Reducing Maximum Time.  
We set the maximum solving time to 36,000 seconds and solve the case with the (H) 
formulation. The solution and bounds achieved are the same as those achieved when the 
maximum time is set to 600 seconds.  Some goals such as goal #4 are using all the time 
allocated to solve them. 

 
b. Using Fix and Relax 

In Figure 26, we show the results obtained by applying F&R  to our (H) 

formulation for “Case 5A.”  Without , the (H) formulation consumes almost all the 

available time (3,600 seconds).  As in “Case 5B” above, some of the goals are using up 

all the allotted time.  When we use  for selected goals (identified as complicated 

F&R

F&R
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goals for this case), we observe that the total solving time is reduced drastically, without 

compromising the quality of the solution value and the associated bounds in this case. 

Priority  Name Direction Value Best 
Bound

# of  
Stages Value Best 

Bound
1 Unmet Task-parts Min 0.0 0.0 1 0.0 0.0
2 Employment Penalty Min 0.0 0.0 1 0.0 0.0
3 Expend Firing Units Max 72.0 73.5 4 73.0 73.0
4 Level Firing Units Min 38.5 37.4 4 40.0 40.0
5 Primary Spread Max 4.0 4.0 4 4.0 4.0
6 Back-up Spread Max N/A N/A 4 N/A N/A
7 M3 List Position Min 597.0 586.7 4 597.0 592.6
8 Residual Salvo Max 241.0 242.4 4 239.0 239.8

Solution Time (Seconds)

Goal (H) Formulation (H) Formulation with F&R

3367.9 316.7

Case 5A: Results with Fix-and-Relax.   

Solution quality is not compromised in this case.  
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IV. CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER 
RESEARCH 

This thesis consolidates the latest specifications for TLAM pre-designation into a 

revised mathematical formulation, and implements it as a multi-objective mixed-integer 

optimization problem.  We show that our models can be optimally solved in reasonable 

time for most of the test cases, and in those cases where computational time is an issue, 

we establish mechanisms to alleviate the model complexity and achieve solutions of 

acceptable quality.  

On the other hand, through our models we validate heuristic results for a number 

of test cases developed by former NPS students. Although the heuristic may fail to 

provide an optimal answer even for the highest priority goal, its overall performance can 

be considered satisfactory. 

There are several aspects in which this thesis contributes to and enhances earlier 

work on automated TLAM predesignation.  With respect to Kirk’s work [Kirk, 1999], the 

contributions lie on: 

• Reformulating multiple parts of the model, making it possible to attain the solution of 
problems that could not be solved before by the combined-goal formulation (C), and 
drastically reducing the time for the hierarchical formulation (H). 

• Incorporating all new specifications, such as submarines, targets, multiple task-part 
requirements, etc. 

• Implementing a Fix-and-Relax (F&R) variable-partition procedure to help solve the 
most complicated cases. 

• Implementing our programs in a much more amenable fashion, where the front-end 
for the user is composed of a number of data files completely independent of the 
source code.  For example, changing goal priorities is as simple as updating an array 
of eight numbers. All of our test cases use the same code, and all reasonable data and 
option customization is done at the level of data files. 

With respect to Arnold’s work, our (C) and (H) formulations: 

• Enhance the quality of the solution obtained. 

• Provide a valid bound on the optimal solution in case this is not achieved. 

• Have the flexibility to arrange goals in any desired order, to surrogate certain goals to 
desired levels of achievement in other goals ((H) formulation), or to allocate different 
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weights in order to generate a variety of efficient points for the multi-objective 
problem ((C) formulation).  These are important limitations in the heuristic.  

The work in this thesis is part of an ongoing effort by students and faculty at NPS 

and NSWCDD.  In that context, we believe that further validation of our models with real 

data (not available at the time of completing this thesis) is necessary.   

We also realize that GAMS may not be the most appropriate environment for 

model generation.  In some cases, the model generation and execution time is even 

greater than the time to solve the (already generated) model in CPLEX.  This burden 

intensifies when multiple models (with minor differences between them) need to be 

solved, such as in the (H) formulation and/or when F&R is used. 
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APPENDIX A.  FULL-TLAM ALLOCATION MODEL  

A. NOTATION 

1. Indices 
,S  set of ships; s S∈  
,H    set of half-modules; { }1, 2,3,...∈ =h H  
,B  set of submarines; b B∈  
,G  set of targets; g G∈  
,T  set of tasks; t T∈  
,P  set of task-parts; { }, , ,p P PR RS BU GH∈ =  
,M    set of task-part missile requirements; { }, 1, 2,3,...m m M′ ∈ =  
,W  set of weapon types; w W∈  

,I  set of subsets near-simultaneous tasks; i I∈  
,A  set of launch areas; a A∈  
,K  set of goals; { }1, 2,...,8∈ =k K  

2. Sets 

,G
gT   subset of tasks for target g; T T  G

g ⊂

,I
iT    subset of near-simultaneous tasks in group i; T T  I

i ⊂

,A
aG   subset of targets which are geo-feasible from area a;  G G  A

a ⊂

,RG   subset of targets which are designated as restricted;  G G  R ⊂
,PRA   subset of areas whose primary task-parts are desired to be 

assigned to as many firing units as possible;  PRA A⊂
,BUA   subset of areas whose back-up task-parts are desired to be 

assigned to as many firing units as possible;  BUA A⊂
,ExpS   subset of expend ships;  ExpS S⊂

,ExpB   subset of expend submarines; ExpB B⊂   
,BUB   subset of submarines that are desired to be assigned to back-up 

task-part allocation of any task t; BUB B⊂   
,NS

tP    subset of task-parts in task t that are not separable;  NS
tP P⊂

,T
tW     subset of weapons that can be used for task t; W W  T

t ⊂
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,STSC  subset of six-tuples (s,h,w,t,p,m) such that the TSC specifies 
that task- part missile (t,p,m) must be allocated to weapon type 
w in half-module h on ship s.  

,BTTSC  subset of five-tuples (b,w,t,p,m) such that the TSC specifies 
that task- part missile (t,p,m) must be allocated to weapon type 
w in the torpedo room of submarine b.  

,BCTSC  subset of five-tuples (b,w,t,p,m) such that the TSC specifies 
that task-part missile (t,p,m) must be allocated to weapon type 
w in the canister capsules of submarine b. 

3. Data 

,S
shwn     number of weapons of type w in half-module h on ship s 

,BT
bwn     number of weapons of type w in the torpedo room of 

submarine b 
,BC

bwn     number of weapons of type w in the canister capsules of 
submarine b 

,H
sm      number of half-modules on ship s 

,BT
bm     number of torpedo tubes on submarine b 

,M
tpn       number of missiles required for task-part p of task t 
,S

sp        employment penalty for ship s   
,B

bp        employment penalty for submarine b 
,NExpn    number of non-expend firing units: \ \NExp Exp Expn S S B B= +   

,S
sa       area for ship s 

,B
ba       area for submarine b 
3 ,pm       weight of task-part p to match the M3 list position of for task-

part p 
3 ,twm      M3 position of weapon  for task t T

tw W∈
,wv        relative value of weapon w for residual salvo computation 

,FU
gn     maximum number of firing units to which a restricted target g 

can be allocated  
,kε       percentage of deviation (from the best possible) allowed for 

goal k when a less priority goal is considered in the objective 
function  
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,kγ  direction of goal k: 1kγ = if maximization, 1kγ = −  if 
minimization 

,kω  weight given to goal k when a combined goal objective is  
considered, where 1 2 ... 8ω ω ω� � � . 

4. Derived Data and Sets  

,tg  target for task t (i.e., G
gt T∈ )          

,T
tS  subset of geo-feasible ships for task t; { }S

s

T A
t t a

S s g G= ∈   

,T
tB  subset of geo-feasible submarines for task 

t; { }T A
t a

B
bB b t G For a a= ∈ =   

5. Decision Variables 

,S
shwtpmX  equals 1 if a weapon of type w in half-module h of ship s is 

used to allocate missile m of  task-part p in task t, 0 otherwise 
,BT

bwtpmX  equals 1 if a weapon of type w in the torpedo room of 
submarine b is used to allocate missile m of task-part p in task 
t, 0 otherwise 

,BC
bwtpmX  equals 1 if a weapon of type w in the canister capsules of 

submarine b is used to allocate missile m of task-part p in task 
t, 0 otherwise 

,S
stpmY  equals 1 if missile m of task-part p in task t is allocated to ship 

s, 0 otherwise  
,B

btpmY  equals 1 if missile m of task-part p in task t is allocated to 
submarine b, 0 otherwise 

,tpmU   equals 1 if task t is unmet, 0 otherwise 
,S

sgZZ  equals 1 if ship s is engaged in any tasking in target g, 0 
otherwise 

,S
sZ  equals 1 if ship s is used, 0 otherwise 

,B
bgZZ  equals 1 if submarine b is engaged in any tasking in target g, 0 

otherwise 
,B

bZ  equals 1 if submarine b is used, 0 otherwise 
,SE  total number of weapons allocated to primary task-parts from 

expend ships  
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,BE  total number of weapons allocated to primary task-parts from  
expend submarines  



 
S
stpNS ,  equals 1 if all missile requirements for non-separable task-part 

p of task t are assigned to ship s, 0 otherwise     
,B

btpNS   equals 1 if all missile requirements for non-separable task-part 
p of task t are assigned to submarine b, 0 otherwise     

,S
sRN    number of missiles on non-expend ship s that are not allocated 

to a primary task-part  
,B

bRN    number of missiles on non-expend submarine b that are 
allocated to a primary task-part  

,RAVG   average of the residual number of missiles across non-expend 
firing units after allocation 

,S
sRD    difference between the residual number of missiles on ship s 

and RAVG    
,B

bRD     difference between the residual number of missiles on 
submarine b and RAVG 

,S
sPR       equals 1 if ship s is assigned to allocated any primary task-part, 

0 otherwise  
,B

bPR          equals 1 if submarine b is assigned to allocated any primary 
task-part, 0 otherwise 

,S
sBU       equals 1 if ship s is assigned to any back-up task-part, 0 

otherwise  
,B

bBU      equals 1 if submarine b is assigned to any back-up task-part, 0 
otherwise 

,S
shwD          equals 1 if one or more weapons of type w remain on ship s in 

half-module h after firing all primary task-part missiles,  0 
otherwise 

,BT
bwD       number of  weapons of type w remain in the torpedo room of 

submarine b after firing all primary task-part missiles,  0 
otherwise 

,BC
bwD       number of  weapons of type w remain in the canister capsules 

of submarine b after firing all primary task-part missiles,  0 
otherwise 

,kZ             objective function value for goal k K∈  
,oZ       combined-goal objective  
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B. OBJECTIVE FUNCTION 

Our multi-objective function consists of the following goals: 

 
Goal k = 1: Minimize the total number of unmet task-parts: 
 

1 1 1
1

min , where
M
tpn

tpm
t p m

Z Z Z∗

=

= =∑ ∑ ∑ U       

 
Goal k = 2: Minimize the use of penalty firing units:  
 
 2 2 2min , where S S B B

s s b
s b

bZ Z Z p Z p∗ = = +∑ ∑ Z        

    
Goal k = 3: Maximize the number of weapons allocated from designated expend firing 

units: 
 

3 3 3max , where S BZ Z Z E∗ = = E+  
 
Goal k = 4: Minimize the deviation from average of residual number of missiles on non- 

expend firing units: 
 

4 4 4
\ \

min , where
Exp Exp

S B
s b

s S S b B B

Z Z Z RD RD∗

∈ ∈

= = +∑ ∑  

 
Goal k = 5: Maximize the number of firing units that have been assigned to allocate 

primary task-parts in launch areas so designated: 
 

5 5 5max , where
A S B

s b

S B
s b

a PR s a a b a a

Z Z Z PR PR∗

∈ = =

 
 = = +
 
 

∑ ∑ ∑  

 
Goal k = 6: Maximize the number of firing units that have been assigned to allocate back-

up task-parts in launch areas so designated: 
 

6 6 6max , where
A S B

s b

S B
s b

a BU s a a b a a

Z Z Z BU BU∗

∈ = =

 
 = = +
 
 

∑ ∑ ∑  

 
Goal k = 7: Minimize the missile to mission matching (M3) list position of all selected 

weapons: 
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3 3
7 7 7

1 10 ,

3 3

10 ,

3 3

10 ,

min , where
MH
tps

S T
shw t

T
t

M
tp

BT T
bw t

T
t

M
tp

BC T
bw t

T
t

nm
S

p tw shwtpm
s h p mw n s St

w W

n
BT

p tw bwtpm
b p mw n b Bt

w W

n
BC

p tw bwtpm
b p mw n b Bt

w W

Z Z Z m m X

m m X

m m X

∗

= => ∈
∈

=> ∈
∈

=> ∈
∈

= =

+

∑ ∑ ∑ ∑ ∑ ∑

∑ ∑ ∑ ∑ ∑

∑ ∑ ∑ ∑ ∑

+

 

 
 

Goal k = 8: Maximize residual salvo capability: 
 

8 8 8
1 0 0

max , where
H
s

S BT BC
shw bw bw

m
S BT

w shw w bw w bw
s h b bw n w n w n 0

BCZ Z Z v D v D v D∗

= > >

= = + +∑ ∑ ∑ ∑ ∑ ∑ ∑
>

 

 
Combined goal: Minimize a weighed average of the goals k K∈ : 
 

0 0 0min , where k k k
k

Z Z Z γ ω∗ = = ∑ z−  

 
C. MODEL CONSTRAINTS 

1. Constraint Formulation 

- Ensure weapon availability for tasks allocated to half-modules, torpedo tubes 
and canister capsules: 

 

A.1. 
1,

,
M
tp

T
t

T
t

n
S S
shwtpm shw

p ms St
w W

X n
=∈

∈

≤∑ ∑∑                              , , 1 , 0H S
s shws h w h m n∀ ≤ ≤ >  

 

A.2.  
1,

,
M
tp

T
t

T
t

n
BT B
bwtpm bw

p mb Bt
w W

TX n
=∈

∈

≤∑∑ ∑                 , 0BT
bwb w n∀ >  

 

A.3.  
1,

,
M
tp

T
t

T
t

n
BC B
bwtpm bw

p mb Bt
w W

CX n
=∈

∈

≤∑∑ ∑                             , 0BC
bwb w n∀ >  
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- Establish the allocation at the firing unit level: 

A.4.  
1 0

,
H
s

T S
t shw

m
S S
shwtpm stpm

h w W n

X Y
= ∈ >

=∑ ∑                              , , , ,1T M
t ts t p m s S m n≤ p≤∀ ∈  

 

A.5. 
0 0

,
T BT T BC
t bw t bw

BT BC B
bwtpm bwtpm btpm

w W n w W n

X X
∈ > ∈ >

+ =∑ ∑ Y          , , , ,1T M
t tb t p m b B m n∀ ∈ ≤ p≤

≤

 

 

A.6.                           1,
T T
t t

S B
stpm btpm

s S b B

Y Y
∈ ∈

+∑ ∑ , , 1 M
tpt p m m n∀ ≤ ≤  

 
- Ensure all (or none) of the task-parts in a task are allocated: 
 

A.7. 
T T T T
t t t t

S B S B
stp m btp m stpm btpm

s S b B s S b B

Y Y Y′ ′ ′ ′
∈ ∈ ∈ ∈

+ = +∑ ∑ ∑ ∑ Y     
{ }

, , 1 , 0,

for " ", " " , "1"

M M
tp tpt p m m n n

p PR GH m
′∀ ≤ ≤ >

′ ′∈ =
 

 
- Prevent near-simultaneous tasks in the same half-module: 

 

A.8.  
10 ,

1,
M
tp

S T
Ishw t

i T
t

n
S
shwtpm

p mwn s St T
w W

X
=> ∈∈

∈

≤∑ ∑                    ∑ ∑ , , 1 H
ss h i h m≤∀ ≤  

 

A.9. 
10 ,

,
M
tp

BT T
Ibw t

i T
t

n
BT B
bwtpm b

p mwn b Bt T
w W

X m
=> ∈∈

∈

≤∑ ∑ ∑ ∑ T
                ,b i∀  

 
- Allocate each task-part missile requirement or take a penalty: 
 
A.10.                  1,

T T
t t

S B
stpm btpm tpm

s S b B

Y Y U
∈ ∈

+ +∑ ∑ = , , 1 M
tpt p m m n∀ ≤ ≤  

 
- Ensure primary and back-up task-part relations: 
 

A.11.                       1,S S
stpm stpmY Y ′ ′+ ≤

, , , ,1 ,1 ,

for " ", " "

T M
t tps t m m s S m n m n

p PR p BU

M
tp′′ ′∀ ∈ ≤ ≤ ≤ ≤

′= =
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A.12.                                          1,B B
btpm btpmY Y ′ ′+ ≤

, , , ,1 ,1 ,

for " ", " "

T M
t tpb t m m b B m n m n

p PR p BU

M
tp′′ ′∀ ∈ ≤ ≤ ≤ ≤

′= =
 

- Ensure primary and ready-spare task-part relations: 
 

A.13. ,S S
stpm stp mY Y ′=                                           

, , ,1 ,

for " ", " "

T M
t tps t m s S m n

p PR p RS
′∀ ∈ ≤ ≤

′= =
 

 

A.14.                          ,B B
btpm btp mY Y ′=

, , ,1 ,

for " ", " "

T M
t tpb t m b B m n

p PR p RS
′∀ ∈ ≤ ≤

′= =
 

 
- Calculate firing unit engagement in targets and in the overall allocation: 
 
A.15.  ,S S

stpm sgZZ≤Y            , , , , ,1T M
t ts t p m g s S m n∀ ∈ ≤ p≤

S

 
 
A.16. ,S

sg sZZ Z≤                     ,s g∀  
 
A.17.  ,B B

btpm bgZZ≤Y                   , , , , ,1T M
t tb t p m g b B m n∀ ∈ ≤ p≤

B

 
 
A.18. ,B

bg bZZ Z≤                     ,b g∀  
 
- Limit firing units for restricted targets: 
 
A.19.            ,S B FU

sg bg g
s b

ZZ ZZ n+ ≤∑ ∑ Rg G∀ ∈

 
- Allocate all (or none) of the tasks in restricted targets: 
 

A.20.                      ,tpm t pmU U ′=
{ }0,for " ", " " , "1"

, ,
, , ,

M
tp

G R
g

n p PR GH m
t t g

t t T t t g G

> ∈ =
′∀

′ ′∈ ≠ ∈
 

 
 - Use of expend firing units for primary task-parts: 
 

A.21.  
1

,
M
tp

Exp T
t

n
S S

stpm
ms S t s S

Y E
=∈ ∈

=∑∑ ∑     for " "p PR=  

 

A.22. 
1

,
M
tp

Exp T
t

n
B

btpm
mb B t b B

Y E
=∈ ∈

=∑ ∑ ∑ B               for " "p PR=  
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 - Ensure the allocation of all missiles for non-separable task-part to the same firing unit: 
 

A.23. 
1

,
M
tpn

S M S
stpm tp stp

m
Y n NS

=

=∑                                , , , , 2T NS M
t t tps t p s S p P n∀ ∈ ∈ ≥  

 

A.24.  ∑                                
1

,
M
tpn

B M B
btpm tp btp

m
Y n NS

=

= , , , , 2T NS M
t t tpb t p b B p P n∀ ∈ ∈ ≥  

 
- Compute absolute deviation from average number of residual weapons onboard each 

firing unit: 
 

A.25.  
1 1

,
MH
tps

T
t

nm
S S S
shw stpm s

h w mt s S

n Y
= =∈

− =∑ ∑ RN "∑ ∑             \ , for "Exps S S p PR∀ ∈ =  

 

A.26. 
1

( )
M
tp

T
t

n
BT BC B B
bw bw btpm b

w mt b B

n n Y RN
=∈

+ − =∑ ∑ ∑ , "                 \ , for "Expb B B p PR∀ ∈ =

 
A.27. 

\ \E xp E xp

S B N E xp
s b

s S S b B B

R N R N n R A V G
∈ ∈

+ =∑ ∑  

 
A.28. ,S S

s sRN RAVG RD− ≥ −              \ Exps S S∀ ∈  
 
A.29.  ,S S

s sRN RAVG RD− ≤            \ Exps S S∀ ∈  
 

A.30. ,B B
b bRN RAVG RD− ≥ −             \ Expb B B∀ ∈

 
A.31. ,B B

b bRN RAVG RD− ≤             \ Expb B B∀ ∈
 
- Keep track of areas that must spread primary task-part missiles: 
 

A.32.  
1

,
M
tp

T
t

n
S S

stpm s
mt s S

Y PR
=∈

≥∑ ∑            , for "S PR
s "s a A p PR∀ ∈ =  

 

A.33. 
1

,
M
tp

T
t

n
B B

btpm b
mt b B

Y PR
=∈

≥∑ ∑             , for "B PR
bb a A p PR∀ ∈ = "  
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- Keep track of areas that must spread back-up task-part missiles: 
 

A.34. 
1

,
M
tp

T
t

n
S S

stpm s
mt s S

Y BU
=∈

≥∑ ∑        , for "S BU
ss a A p BU= "∀ ∈  

 

A.35. 
1

,
M
tp

T
t

n
B B

btpm b
mt b B

Y BU
=∈

≥∑ ∑                   , for "B BU
bb a A p BU∀ ∈ = "  

 
- Calculate residual salvo size: 
 

A.36. 
1,

,
M
tp

T
t

T
t

n
S S S
shw shwtpm shw

ms St
w W

n X
=∈

∈

− ≥∑ ∑ D  , , 1 , 0, for " "H S
s shws h w h m n p PR∀ ≤ ≤ > =  

 
A.37. 

0

1,
S
shw

S
shw

w n

D
>

≤∑                     , 1 H
ss h h m∀ ≤ ≤  

 

A.38. 
1,

; "
M
tp

T
t

T
t

n
BT BT BT
bw bwtpm bw

mb Bt
w W

n X D p
=∈

∈

− ≥∑ ∑ ",P= R       , 0, for "BT
bwb w n p PR∀ > = "  

 
A.39. 

0

,
BT
bw

BT BT
bw b

w n

D m
>

≤∑         b∀  

 

A.40. 
1,

; "
M
tp

T
t

T
t

n
BC BC BC
bw bwtpm bw

mb Bt
w W

n X D p
=∈

∈

− ≥∑ ∑ ",PR=  , 0, for "BC
bwb w n p PR∀ > = "  

 
- TSC specifications: 
 
A.41.         ∀ ∈  1,S

shwtpmX = ( , , , , , ) Ss h w t p m TSC
 
A.42.            1,BT

bwtpmX = ( , , , , ) BTb w t p m TSC∀ ∈
 
A.43.          ∀ ∈  1,BC

bwtpmX = ( , , , , ) BCb w t p m TSC
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- Submarine back-up allocation: 
 

A.44.                                       0,BT
bwtpmX =

, ,
, , ,

0,1

for " ",

BU T
t

BT M
bw tp

b B w W
b w t m

n m

p BU

∉ ∈
∀

> ≤ ≤

=

n  

 

A.45.      0,BC
bwtpmX =

, ,
, , ,

0,1

for " ",

BU T
t

BC M
bw tp

b B w W
b w t m

n m

p BU

∉ ∈
∀

> ≤ ≤

=

n  

 
- Force levels of achievement for goals: 
 
A.46. (1 ),k k kZ Z ε∗

′ ′≤ +     , 1kk k k γ ′′ ′∀ < = −  
 
A.47. (1 ),k k kZ Z ε∗

′ ′≥ −     , 1kk k k γ ′′ ′∀ < =  
 
- Binary variables: 
 
A.48. { }0,1 ,S

shwtpmX ∈  , , , , , ,1 , , , 0, ,1T H T S
t s t shws h wt p ms S h m w W t T n p P m n∀ ∈ ≤ ≤ ∈ ∈ > ∈ ≤ M

tp≤   
 
A.49. { }0,1 ,BT

bwtpmX ∈   , , , , , , 0, , ,1T T BT
t t bwb w t p mb B w W n t T p P m n∀ ∈ ∈ > ∈ ∈ ≤ M

tp≤  
 
A.50. { }0,1 ,BC

bwtpmX ∈   , , , , , , 0, , ,1T T BC
t t bwb w t p mb B w W n t T p P m n∀ ∈ ∈ > ∈ ∈ ≤ M

tp≤  
 
A.51. { }0,1 ,S

sgZZ ∈   , ,T
ts g s S g G∀ ∈ ∈  

 
A.52. { }0,1 ,S

sZ ∈   T
ts S∀ ∈  

 
A.53. { }0,1 ,B

bgZZ ∈   , ,T
tb g b B g G∀ ∈ ∈  

 
A.54. { }0,1 ,B

bZ ∈           T
tb B∀ ∈
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A.55. { }0,1 ,S
stpNS ∈   , , , ,T

ts t p s S t T p P∀ ∈ ∈ ∈  
 
A.56. { }0,1 ,B

btpNS ∈   , , , ,T
tb t p b B t T p P∀ ∈ ∈ ∈  

 
A.57.   {0,1},S

sPR ∈ T
ts S∀ ∈  

 
A.58.    {0,1},B

bPR ∈ T
tb B∀ ∈

 
A.59.   {0,1},S

sBU ∈ T
ts S∀ ∈  

 
A.60.    {0,1},B

bBU ∈ T
tb B∀ ∈

 
- Non-negative Variables (and bounds, if applicable): 
 
A.61.   0 1S

stpmY≤ ≤ , , , , , , ,1T M
t ts t p m s S t T p P m n∀ ∈ ∈ ∈ ≤ ≤ p

,

 
 
A.62.   0 1B

btpmY≤ ≤ , , , , , ,1T M
t tb t p mb B t T p P m n∀ ∈ ∈ ∈ ≤ ≤ p  

 
A.63.   0 1,tpmU≤ ≤ , , , ,1 M

tpt p m t T p P m n∀ ∈ ∈ ≤ ≤  
 
A.64.   0 1,S

shwD≤ ≤ , , ,1 , , 0T H T S
t s t shs h w s S h m w W n∀ ∈ ≤ ≤ ∈ w >  

 
A.65.     0 1,BT

bwD≤ ≤ , , ,T T BT
t t bwb w b B w W n∀ ∈ ∈ > 0  

 
A.66.     0 1,BC

bwD≤ ≤ , , ,T T BC
t t bwb w b B w W n∀ ∈ ∈ > 0  

 
A.67.   0,S

sRN ≥ T
ts S∀ ∈  

 
A.68.    0,B

bRN ≥ T
tb B∀ ∈

 
A.69.   0,S

sRD ≥ T
ts S∀ ∈  

 
A.70.    0,B

bRD ≥ T
tb B∀ ∈

 
A.71.  0RAVG ≥
 
A.72.  0SE ≥
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A.73.  0BE ≥
 
 

2. Multi-Objective Formulation 
We consider two formulations for our multi-objective optimization problem: 

1.  Hierarchical formulation (H): For each k K∈ , solve the following 

sequence of models: 

 
*( ) : min (or max)

s.t. (A.1) - (A.73)
k k kH Z Z=

 

Remark: To be more precise, we write all these models as the following 

minimization problems: 
*( ) : min

s.t. (A.1) - (A.73)
k k k k kH Z Zγ γ= − −

 

2.  Combined-goal (sometimes referred to as weighed-sum) formulation (C): 

*( ) : min
s.t. (A.1) - (A.45)

(A.48) - (A.73)

o oC Z Z=

 

3. Description of Formulation. 

• Goals #1 (Z1) through #8 (Z8) seek to minimize (or maximize) our multiple 
objectives.  Z0 is formulated as a linear combination of Z1, …, Z8, where the more 
important the goal, the higher the associated weight.  

• Constraints (A.1) to (A.3) ensure that: (a) we do not exceed the available weapons of 
each type in any half-module on a ship, and (b) we do not exceed the available 
weapons of each type in the torpedo room and in the canister capsules on a 
submarine.  

• Constraints (A.4) to (A.6) relate the half-module, torpedo room and canister capsule 
variables to the firing unit level.  In particular, (A.4) tracks the ship (if any) used for a 
specific task-part mission, whereas (A.5) does the same for submarines. (A.6) ensures 
that each task-part missile requirement is allocated once (at most). 
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• Constraint (A.7) requires the allocation of either all or none of the task-part missiles 
in a task. 

• Constraints (A.8) and (A.9) avoid allocating more than one TLAM per half-module 
(for ships) and more than the number of torpedo tubes available (for submarines) for 
task-parts associated with near-simultaneous tasks. 

• Constraint (A.10) determines whether a task-part missile requirement has been 
allocated or not.  

• Constraints (A.11) and (A.12) establish the relation between primary and back-up 
missions: primary and back-up task-parts for a task cannot be allocated to the same 
firing unit. 

• Constraints (A.13) and (A.14) establish the relation between primary and ready-spare 
missions: primary and ready-spare task-parts for a task must be allocated to the same 
firing unit. 

• Constraints (A.15) and (A.17) track which firing units have been used in the 
allocation of a specific target. 

• Constraints (A.16) and (A.18) track which firing units have been used in the overall 
allocation. 

• Constraint (A.19) limits the number of firing units assigned to a restricted target not 
to exceed the maximum number of firing units allowed for that target. 

• Constraint (A.20) ensures that all or none of the tasks in a restricted target must be 
allocated. 

• Constraints (A.21) and (A.22) determine if an expend firing unit is assigned to a 
primary task-part missile requirement. 

• Constraints (A.23) and (A.24) ensure that all missile requirements for a non-separable 
task-part are allocated to the same firing unit. 

• Constraints (A.25) to (A.31) calculate the absolute deviation from the average 
number of residual weapons onboard each non-expend firing unit. 

• Constraints (A.32) and (A.33) keep track of the number of firing units that have been 
allocated primary task-parts, for areas so designated. 

• Constraints (A.34) and (A.35) keep track of the number of firing units that have been 
allocated back-up task-parts, for areas so designated. 

• Constraints (A.36) to (A.40) calculate the residual salvo-size. In particular, (A.37) 
ensures that only one weapon per half-module counts for computing residual salvo.  
(A.39) limits the maximum count for weapons in the torpedo room on a submarine to 
the number of torpedo tubes.  

• Constraints (A.41) to (A.43) satisfy the specifications of the TSC.   
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• Constraints (A.44) and (A.45) ensure that back-up task-parts are not allocated to 
submarines that are not designated for back-up tasking. 

• Constraints (A.46) and (A.47) establish levels of achievement for goals that are 
hierarchically superior to the goal that is being minimized (or maximized) at the 
incumbent iteration.  (Only for the hierarchical formulation (H).) 
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